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Abstract
COVID-19 pandemic has highlighted the impor-
tance of prediction algorithms in modeling the fu-
ture trajectory of infectious disease, namely pre-
dicting future cases, hospitalizations, and deaths.
Such knowledge can be used to effectively and ef-
ficiently manage the government’s response plan-
ning. We propose a Gamma Model which captures
the true infection rate of the infectious disease and
demonstrate its performance on COVID-19 com-
pared with L1-regularized autoregressive moving
average model and a SIRD model. We provide our
implementation at https://github.com/jamgochiana/
CovidModeling.

1 Introduction
One year of the COVID-19 pandemic has led to more than
3 million deaths and 150 million cases worldwide. It has
rapidly upended people’s lives and transformed the world in
an unprecedented way. The exponential rate of increase of
new infections, combined with the significant percentage of
patients who require hospitalization and respiratory support,
has exposed the weaknesses of pandemic preparedness and
response planning.

To protect public health, the governments have imposed
strict measures to reduce social contact and control the spread
of the virus. Undoubtedly, the severity and the timing of
such restrictions should be motivated by the true state of the
pandemic, namely, the accurate number of COVID-19 cases.
However, due to the large percentage of asymptomatic cases
and limited testing capabilities, such information is very chal-
lenging to acquire.

As part of this project, we aim to obtain a more accurate es-
timate of the true infection rate of COVID-19, which would
hopefully enable a more proactive, efficient, and effective in-
troduction of such restrictions.

2 Background
Since the outbreak of COVID-19, many models for forecast-
ing and for studying the underlying dynamics and character-
istics of the disease have been proposed. These models can
be separated into two main categories: (1) SIR-based models,
and (2) curve-fitting models.

In order to study the large-scale epidemiological aspects
of the pandemic, it is convenient to use mean field analysis

models with Markovian structure. The so-called SIR model
is perhaps the most commonly used one because, while rela-
tively simple, it captures the main drivers of the macroscopic
spreading process. This model, introduced by Kermack et al.,
studies the dynamics of the density of the susceptible popu-
lation, denoted by S, the density of the infected population I ,
and the remaining population which is either recovered or de-
ceased, denoted by R. This is a very general model that can
capture the dynamics of most infectious deceases, and many
variants have been proposed to model COVID-19.

Chowdhury et al. implement a SEIR (Susceptible-
Exposed-Infected-Recovered) compartmental model to sim-
ulate the ICU demand and deaths in different non-
pharmacological interventions (NPI) scenarios in 16 coun-
tries from diverse regions and economic status. In a different
line of work, the modified SIRD model, that takes into ac-
count the deaths associated with the virus, is used to analyze
time series data and predict the total cases, deaths and the re-
covered population (Sen and Sen, 2021). Zou et al. augments
the SEIR model to capture the undetected infections, propos-
ing the SuEIR model. Using machine learning algorithms,
they try to predict the future deaths and peak dates of active
cases across the United States. There are many other modi-
fications of this dynamical model, where the individuals can
be in more states (e.g. quarantine or hospitalization) to effec-
tively adapt to the special properties of COVID-19 (Cordelli
et al., 2020; Gribaudo et al., 2021; Mandal et al., 2020). Fi-
nally, a new axiomatic model of epidemic development HIT
captures special characteristics of COVID-19, like delayed
detection and asymptomatic virus holders (Nesterov, 2020).

Data-fitting models are the second major class used for
forecasting COVID-19 cases. Hoseinpour Dehkordi et al. use
linear regression to project future cases and deaths, collect-
ing data from many different countries. Weinberger et al.
use Poisson regression models to estimate excess deaths as-
sociated with COVID-19 in the United States. Following a
similar approach, autoregressive moving average (ARMA)
models and some variants have been widely used to fore-
cast the daily global incidence of COVID-19 (Yousaf et al.,
2020; Alzahrani et al., 2020; Ceylan, 2020; Pourghasemi et
al., 2020).

3 Methodology
In this section we describe the three models used to fit dif-
ferent models and make predictions on subsets of new case,
total hospitalization, and/or new death data. We formu-
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late a convex, L1-regularized autoregressive moving average
(ARMA) model, our own convex model which takes into ac-
count lagged dynamics, and a non-convex SIRD model. In all
our models, we denote the number of new cases, total hospi-
talizations, and new deaths at time t as ct, ht, and dt respec-
tively.

3.1 Regularized Autoregressive Moving Average
An ARMA model is a function which linearly regresses fea-
tures from L previous time steps to features at the next time
step. For the purposes of comparing to our own lagged-
dynamics model presented in Section 3.2, we use L steps of
hospitalizations and deaths to regress to next step hospital-
izations and deaths. We can describe this predictor function
fΘ : R2L → R2 as follows:

[
ht+1

dt+1

]
= fΘ(ht−L+1:t,dt−L+1:t) = Θᵀ

[
ht−L+1:t

dt−L+1:t

1

]
,

(1)
where Θ ∈ R2L+1×2 is a matrix encoding learned model
weights.

To learn model weights from data, we optimize an
L1-regularized least-squares objective (Lasso). The L1-
regularization is convenient for enforcing sparsity in our
weights and preventing overfitting. If we form a dataset
(X ∈ Rn×2L,Y ∈ Rn×2) of all n L-step inputs and 1-step
outputs of hospitalizations and deaths in a particular time-
series, we may fit Θ by minimizing the objective

min
Θ

1

n
‖[X 1]Θ−Y‖22 + λ‖Θ‖1, (2)

where λ is a tunable relative weighting parameter.
This optimization objective can be solved efficiently with

coordinate descent.

3.2 Gamma model
The core idea of our Gamma model is to first split the popu-
lation into two types: the vulnerable population, V , and the
non-vulnerable population, U . We assume that every indi-
vidual in V , upon infection, will end up with a hospitaliza-
tion/severe case, in a matter of ∆1 days (a model constant
we discuss below) and that a record will be kept about their
hospital presence. For the U -type individuals, we assume no
hospitalization would follow. It is natural to have these two
types of individuals in our model, as regarding COVID-19,
we often think of the older people with pre-existing condi-
tions as being a lot more susceptible to severe illness, and the
young people without pre-existing conditions as the ones who
are a lot more sheltered from grave consequences.

Next, we present some of the notation used in the model.
We split our quantities to three parts: (1) the observable
quantities, (2) the non-observable variables, (3) the constants.
Note that the observable quantities are extracted directly from
the data, while the non-observable ones capture the underly-
ing structure of out model and are computed through the re-
lations described in the experiments section.

• Observable Quantities
– dt - number of new deaths observed during day t
– ht - number of people currently in the hospital dur-

ing day t

• Non-Observable Variables

– Tt - number of infections (past and present) that
happened up to day t

– Vt - number of type V (vulnerable) individuals that
are actively infected during day t

– Ut - number of type U individuals that are actively
infected during day t

• Constants

– ∆1 = 11 - delay in detecting a severe case since
the occurrence of the infection

– ∆2 = 18 - time it takes for a death to occur since
the infection

– ∆3 = 14 - how long an infection will last
– p = 0.02 - probability of death given infection

The values of the constants above were set by taking into
consideration estimates (obtained by healthcare profession-
als through extensive empirical evidence) of the following:
average number of days it takes to require hospital care if in-
fected, average number of days it takes for a death to occur,
average number of days an infected person is contagious, and
probability of dying upon infection.

Assumptions
Our model makes the following assumptions:

1. ht = Vt−∆1
. This signifies that every case among type

V individuals is detected in ∆1 days. Intuitively, this
makes sense, as we assume each type V individual will
eventually develop a severe case, which will be detected
when they arrive at the hospital.

2. dt = p(Tt−∆2
− Tt−∆2−1). This assumption is equiva-

lent to saying that given that a death occurs for a certain
individual, it is detected in exactly ∆2 days.

3. There exist, for each day t a matrix Γt such that[
Vt+1

Ut+1

]
= Γt

[
Vt
Ut

]
+ εt,

εt ∼ N (0, σ2

[
Vt 0
0 Ut

]
)

Note that Γt =

[
γt,11 γt,12

γt,21 γt,22

]
is a time-dependent ma-

trix.

4. The entries of Γt do not change too much over a time
interval of L days (for some fixed L). We expand on this
in the experiments section.

Assumption 3 refers to how we model the dynamics of the
infection evolution. One of our core objectives here is to esti-
mate these gamma parameters which determine the dynamics
of how the infection evolves. This can help with getting a
better estimate of the true current case counts as well as pre-
dicting how the infection will grow over time. Assumption 4
refers to the fact that the underlying dynamics of the infec-
tion cannot change too drastically over a short time period of
L days. In the experiments section, we describe how we use
this assumption to compute the quantities Γt.



Alternative Gamma model
We also consider a simpler model, where we only have two
dynamic-related parameters for each day, Γt = [γt,1, γt,2]ᵀ.
We model [

Vt+1

Ut+1

]
= (Vt + Ut)Γt + εt,

where εt ∼ N (0, σ2(Vt + Ut)I).
The rest of the model, namely constants, and the split in the

U, V types, is the same as in the original Gamma model. Note
that this is a more simplistic version of the Gamma model,
because here we assume the pattern of interactions of an in-
dividual with members of their type is the same as for inter-
actions with members from the opposite type. In this model,
γt,1 describes how the infection among the V -type will evolve
based on the total number of active infections at day t′. By
contrast, in the Gamma model, the value of Vt′+1 depends on
both Ut′ , Vt′ , as we consider the cross-interactions U − V to
be different than the interactions V − V .

Comparing the alternative Gamma Model with the original
is valuable, as it helps us understand if the nature of inter-
actions V − V and U − U are fundamentally different than
U − V . Intuitively, we expect the answer to be in the affir-
mative, as we would expect the type V individuals to shelter
more from type U individuals, who are more active and thus
more susceptible to be infected, than from individuals in V ,
who we expect to be more cautious about getting infected.

3.3 SIRD model
A Susceptible-Infectious-Recovered-Deceased (SIRD)
model is a deterministic compartmental model of the in-
fectious disease where the population is divided into the
following compartments: susceptible S(t), infectious I(t),
recovered R(t), and deceased D(t). An extension of the
SIRD model also contains confirmed cases C(t). Each of
the aforementioned variables accounts for the population
number at a specific point in time. The SIRD model is
defined with the following partially observable nonlinear
system:

dS

dt
= −βIS

N
dI

dt
=
βIS

N
− γI − µI

dR

dt
= γI

dD

dt
= µI

dC

dt
=
βIS

N

(3)

where β, γ, and µ are constants that we must optimized for,
and only C and D are observed. In our project, we dis-
cretize the dynamics with an integration scheme (e.g. 4th
order Runge-Kutta) and end up with the generalized discrete-
time state-space system

xt+1 = fθ(xt, t) + wt

yt = gθ(xt, t) + vt,
(4)

where xt ∈ Rn is the full state at time t (i.e.
[St, It, Rt, ct, dt]

ᵀ) and yt ∈ Rm is the observation at time
t (i.e. [ct, dt]

ᵀ). fθ can be defined with discretization of the

dynamics in Equation (3), θ contains model parameters (β,
γ, and µ), and wt and vt are process and observation noises,
respectively.

4 Experiments
In our experiments, we compare the three models described
in Section 3 based on how they perform at the task of fore-
casting true unseen COVID-19 statistics given past statistics.

4.1 Dataset
To train and test our models, we use the Our World in Data
Covid-19 dataset (Hasell et al., 2020)1. This dataset consists
of many statistics reported daily for a number of countries
through the course of the pandemic. From this dataset, we
extract time-series of new cases, total hospitalizations, and
new deaths reported daily in the United States, the United
Kingdom, and Italy.

4.2 Metrics
To compare methods, from each country location, we ran-
domly select B = 25 sets of 42-day input series to use for
training, and the corresponding K = 7 following days to use
for testing. We train model parameters over each input se-
quence and propagate our learned model forward to make a
prediction of the COVID-19 trajectory over the next 7 days.
We then report the mean absolute error (MAE), mean ab-
solute percentage error (MAPE), and root mean square er-
ror (RMSE), which quantify linear- and quadratic-like errors.
These metrics are defined as follows:

MAE =
1

BK

B∑
i=1

K∑
τ=1

| yit+τ − zit+τ |, (5)

MAPE =
1

BK

B∑
i=1

K∑
τ=1

|
yit+τ − zit+τ

yit+τ
|, (6)

RMSE =

√√√√ 1

BK

B∑
i=1

K∑
τ=1

(
yit+τ − zit+τ

)2
, (7)

where yit+τ indicates the true value of a particular feature at
time t+ τ in the i-th problem, and zit+τ indicates the forecast
at that same index in time.

4.3 Model details
ARMA
To fit the ARMA model, we apply a rolling window within
each 42-day training time-series to form a dataset consist-
ing L = 14-day input and 1-day output pairs. We then fit
model parameters using the Scikit-learn implementation of
Lasso (Pedregosa et al., 2011), which optimizes efficiently
using coordinate descent. We use a regularization parame-
ter λ = 5. To make a prediction, we use the final 14 days
of training data to input to our learned model, and iteratively
propagate our learned model forward 7 days by appending
new outputs to the model input.

1Available at https://covid.ourworldindata.org/
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Gamma
To fit the Gamma model, we first reconstruct the values of
(Ut′ , Vt′) up to day t − ∆2. At day t, we have seen ht′
and dt′ for all t′ ≤ t and, therefore, from ht′ ’s, we re-
cover Vt′−∆1

for t′ ≤ t. Note that ∆2 > ∆1, so at day
t, we know Vt−∆1

but also Vt−∆2
. With the data received

so far, we aim to compute Ut′−∆2
for all t′ ≤ t. To do so,

we first compute Ut−∆2
+ Vt−∆2

. This will be enough to
compute Ut−∆2 (and the earlier Ut′ ’s) because, as we have
pointed out, we know the value of Vt−∆2 . To compute the
sum Ut−∆2 + Vt−∆2 , we use the data regarding deaths to
compute the number of people who were infected at most ∆3

days prior to day t−∆2. Thus, the quantity we want to esti-
mate is

∑t−∆2

t′=t−∆2−∆3
[Tt′ − Tt′−1] (new infections for each

day t′ ∈ {t−∆2−∆3, t−∆2−∆3 + 1, ..., t−∆2}. To do
so, from our second modeling assumption, we have that

t−∆2∑
t′=t−∆2−∆3

[Tt′ − Tt′−1] =

t∑
t′=t−∆3

1

p
dt′

Hence, we estimate

Ut−∆2
=

t∑
t′=t−∆3

1

p
dt′ − ht−∆2+∆1

Again, ht−∆2+∆1
= Vt−∆2

as we have access to this at
day d because ∆2 > ∆1. After reconstructing the values
of (Ut′ , Vt′) up to day t − ∆2, we focus on the last L =
7 days for which the values have been completed, namely
Vt−∆2−L:t−∆2

and Ut−∆2−L:t−∆2
. We then formulate two

optimization problems to determine the underlying dynamics
of the infection in this time-span.

There are two ways we are going to estimate the values Γt′
for t′ = t−∆2−L, t−∆2−L+1, ..., t−∆2. What these two
have in common is the intuition that for a certain number of
days, these values should not change too much, meaning that
each entry in Γ is almost constant in any time-span of L days.
The two formulations we will be using are the following:

1.

min
Γ

t−∆2−1∑
t′=t−∆2−L

‖
[
Vt′+1

Ut′+1

]
− Γ

[
Vt′
Ut′

]
‖22

This formulation assumes Γt′ is a constant matrix for
t′ = t−∆2 − L, t−∆2 − L+ 1, ..., t−∆2

2.

min
Γ

t−∆2−1∑
t′=t−∆2−L

‖
[
Vt′+1

Ut′+1

]
− Γt′

[
Vt′
Ut′

]
‖22+

+λ

t−∆2−1∑
t′=t−∆2−L

‖Γt′ − Γt′+1‖1

Here, we add an L1 term penalizing day-to-day change
in Γt to enforce smoothness, with weight λ.

In terms of computing the optimal values for Γ, for both
optimization tasks, we employ the gradient descent method
(or subgradient descent for the case of the second formula-
tion). We set the number of iterations to be 105, and we set
our stepsize to be αk = α√

k
for α = 0.1. The reason we use

this method is that CVXPY was running slowly and would
not find an accurate enough solution in the default number of

iterations, and increasing the iterations even more was slow-
ing down the program even more.

To predict forward the values of V̂t′ , Ût′ for t′ > t − ∆2,
we assume the gamma values are constant and simulate the
evolution of the infection using the computed value of Γt−∆2

.
More specifically, we predict[

V̂t−∆2+k

Ût−∆2+k

]
= Γkt−∆2

[
Vt−∆2

Ut−∆2

]
.

An important aspect to note is that, as we have mentioned
before, we know the ground truth of values Vt−∆2+1:t−∆1

.
Yet, for the prediction phase, we pretend we do not have ac-
cess to these, predict V̂t−∆2+1:t−∆1

as described above, and
then proceed to predict V̂t−∆1+1:t−∆1+K , so for K = 7 days
ahead of time t. As far as deaths are concerned, our model is
not equipped to estimate very accurately daily new deaths,
so for day d > t, we predict the number of deaths to be
p · (V̂d−∆2 + Ûd−∆2)/14, so as to account for the fact that
V̂d−∆2

, Ûd−∆2
account for active infections (time span of 14

days).

SIRD
To fit the SIRD model, we use Certainty-Equivalent Expec-
tation Maximization (CE-EM) (Menda et al., 2020). CE-EM
iteratively perform a two-step procedure—the E-step holds θ
constants and infers the unobserved state variable x, while the
M-step optimizes for θ. CE-EM differs from vanilla Expec-
tation Maximization (EM) in that it assumes that the distribu-
tion of the states conditioned on observation is a Dirac delta
function. That is, CE-EM only maintains the most likely es-
timate for x, making EM much more tractable.

CE-EM optimizes the following objective function with
block coordinate ascent:

J(x1:t,θ) = log p(x1) +

T∑
t=1

log pv(yt − gθ(xt, t))

+

T−1∑
t=1

pw(xt+1 − fθ(xt, t))

(8)

Once model parameters θ and most likely state values x1:t

are learned, we can propagate the dynamics and observation
functions forward to form a forecast. That is, we can form
a 7-day prediction by applying fθ and gθ sequentially for 7
days from xt (without injecting any noise).

4.4 Results and Discussion
To compare the forecast accuracy of the different models
learned, we report the mean of metrics calculated across
B = 25 series in three countries in Table 1. Since all models
forecast deaths, we use death prediction as a benchmark in
our discussions. In Fig. 1, we visualize a single 7-day death
and hospitalizations predictions for all models.

With the United States time-series, we notice that the SIRD
model fit with CE-EM performs better across all metrics, with
the Gamma models performing the next best. With the United
Kingdom time-series, while the SIRD model again performs
the best, the ARMA model is much more comparable to
the Gamma models. Finally, with the Italy time-series, the
ARMA model outperforms the other two. The results indi-
cate that no model uniformly outperforms the others. Fur-
thermore, we notice by examining the MAPE that at best, we



Table 1: Metrics for 7-day forecast performance computed for different methods in the United States, the United Kingdom, and Italy. Means
and standard deviations are computed from B = 25 trials.

Cases Hospitalizations Deaths

Model MAE(×105) MAPE RMSE(×105) MAE(×103) MAPE RMSE(×103) MAE MAPE RMSE

U
SA

ARMA — — — 1.714±0.284 0.029±0.003 2.033±0.342 262.831±59.965 0.339±0.165 331.926±72.708

Gamma4 — — — 5.963±1.333 0.081±0.010 6.191±1.375 154.294±25.775 0.102±0.014 168.289±25.841

GammaL1 — — — 4.871±0.895 0.077±0.008 5.086±0.930 142.166±21.291 0.099±0.013 158.420±21.782

Gamma2 — — — 9.191±2.145 0.148±0.021 9.398±2.187 151.172±24.563 0.102±0.013 162.045±24.967

SIRD 1.002±0.2252 0.079±0.009 1.085±0.241 — — — 134.874±26.053 0.083±0.011 143.258±26.545

U
K

ARMA — — — 0.344±0.070 0.042±0.006 0.395±0.082 35.294±15.214 0.422±0.262 45.16±20.475

Gamma4 — — — 1.883±0.586 0.120±0.013 1.972±0.612 49.746±14.038 0.205±0.024 51.444±14.169

GammaL1 — — — 1.573±0.520 0.101±0.011 1.664±0.549 46.753±12.294 0.199±0.022 48.600±12.501

Gamma2 — — — 2.554±0.805 0.250±0.033 2.636±0.831 41.594±12.580 0.173±0.021 43.111±12.650

SIRD 0.310±0.125 0.221±0.027 0.333±0.135 — — — 27.514±7.714 0.162±0.023 29.482±8.106

It
al

y ARMA — — — 0.436±0.090 0.100±0.030 0.496±0.098 14.937±2.692 0.152±0.033 17.420±3.294

Gamma4 — — — 1.571±0.403 0.216±0.055 1.676±0.431 36.240±7.100 0.244±0.049 37.227±7.175

GammaL1 — — — 1.256±0.379 0.158±0.035 1.334±0.410 35.300±6.915 0.248±0.035 36.447±6.991

Gamma2 — — — 3.117±0.897 0.296±0.049 3.116±0.897 32.997±6.254 0.235±0.048 34.262±6.365

SIRD 0.137±0.032 0.144±0.018 0.153±0.035 — — — 28.108±6.680 0.151±0.022 30.215±7.060

can only expect our models to achieve 8 − 15% accuracy in
predicting deaths over 7 days. This validates the notion that
predicting COVID is hard.

We also observe that there is a large gap in model fitting
times between the three models. In Table 2 we report the
times taken to fit allB = 25 models for each method with the
United Sxtates time-series. We notice that the Gamma model
can fit 25 time-series about 13 times faster than the ARMA
model, and almost 30 times faster than the non-convex SIRD
model.

4.5 Strengths and Weaknesses of Gamma Model
First, the strength of the Gamma Model is that, without using
any data regarding positive cases, it estimates the number of
true active cases on a given day. During day t, our model ei-
ther has an estimate obtained from data preprocessing of true
number of active cases at day d, provided that d ≤ t − ∆2

(our estimate being Ud + Vd), or it has an estimate obtained
via prediction, namely Ûd + V̂d. Hence, our model holds
an estimate of a key unobserved quantity and makes predic-
tions regarding deaths and hospitalizations based on that. By
comparison, the ARMA and SIRD models do not attempt to
estimate the true number of active infections in order to make
predictions.

Another strength of the Gamma Model is that it attempts to
study the dependence of Vt′+1 on Ut′ and Vt′ . In other words,
the values of γt,11, γt,12] that we compute explain how the
infection spreads during the next day both within the popula-
tion segment V , and from population segment U to segment
V . By comparing the results from the 4-parameter Gamma
Model experiments (GammaL1 and Gamma4) with the ones
from the 2-parameter Gamma Model (Gamma2), we notice
that the 4-parameter ones do much better in terms of predict-
ing hospitalizations. This is consistent with our expectations
as we postulated the spread of infection from U → V might
not be the same as the one from V → V or from U → U .

In terms of weaknesses of Gamma Model, we first mention
that our model relies on very rigid assumptions regarding the
delay of information. Specifically, we assume that infections
within the V segment are observed after exactly ∆1 = 11
days, and that deaths happen exactly ∆2 = 18 days after

the infection. These assumptions likely cause a considerable
proportion of the error in prediction, as the time it takes to get
hospitalized or pass away from the disease has a good deal of
variance.

Moreover, our model assumes there is a perfect split (done
a-priori) into two population segments V,U , in terms of
whether a hospitalization would occur or not. However, such
a split is not realistic, as hospitals’ policies (depending on
symptoms) regarding of what patients they admit can differ
a lot in the course of the pandemic, because during peaks of
infection, resources such as hospital beds are scarce. Addi-
tionally, as new treatments against the disease have been de-
veloped, fewer people might need hospitalization to fight the
disease, so the demarcation between U -types and V -types is
not stable throughout the entire period of the disease. This
issue also comes up in our assumption that the probability of
death given infection is constant. Novel treatments, as well as
more patient time during periods of low case count, can help
reduce the mortality rate.

Finally, another drawback of Gamma Model is that, due to
the difference in ∆2,∆1, even though we receive the ground
truth values of Vt′ for t′ ∈ {t − ∆2, ..., t − ∆1}, we can-
not, at time t, compute Ut′ for t′ ∈ {t − ∆2, ..., t − ∆1}.
Hence, after estimating γt−∆2

, we use this value to propagate
forward the values of V̂t−∆2+1, V̂t−∆2+2, ..., even though the
values Vt−∆2+1, Vt−∆2+2, ..., Vt−∆1 are known to us. Not
being able to use the ground truth values of hospitalizations
for the last ∆2−∆1 days inevitably affects the quality of our
predictions, as we essentially propagate predictions forward
14 days instead of just 7. This is one of the main reasons why,
as it can be seen from Figure 1, some of our hospitalization
predictions diverge from the test set.



Table 2: Total time to fit all B = 25 models for each model method
with United States time-series.

Model Fit Time (s)

ARMA 67.90

Gamma4 5.20

GammaL1 7.48

Gamma2 3.19

SIRD 143.50
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(b) Prediction of hospitalizations over time.

Figure 1: Example of the prediction in the United States. Models
were trained on the first 42 days and then made predictions for the
following 7 days.

5 Conclusion
We have developed a new model, Gamma model, that cap-
tures the true infection rate of the COVID-19 pandemic, in
order to predict hospitalizations and deaths in the near fu-
ture. Our model does not rely on the number of confirmed
cases which can be inaccurate or deficient. Instead, we split
the population into two groups, according to the risk of get-
ting severe symptoms, and estimate their size based on deaths
and hospitalizations. We compared our model with the L1-

regularized autoregressive moving average (ARMA) and the
SIRD model, which have been widely used in predicting the
trajectory of the COVID-19 pandemic. We have shown that
the Gamma model can match the performance of ARMA and
SIRD at a much lower computational cost.

There are several avenues that we could explore in future
work. First, we consider adapting the model so as to incor-
porate the 7-day unused ground truth hospitalization data (in-
stead of predicting them). Additionally, we can extend our
model with vaccination information.
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