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Abstract

Increased adoption of depth-estimating cameras renders
useful the depth-aware transfer of artistic styles to con-
tent images. In this paper, we explore extensions of neu-
ral style transfer to three dimensions using iterative style
transfer. For content image data that includes a processed
depth channel, we implement alternative content and style
loss functions that use depth to mask parts of the image.
For image data that lacks a depth channel, we explore us-
ing a depth prediction network and a depth-matching loss
component to mirror depth estimates between content and
pastiche images. We investigate transferring single artistic
styles, as well blending multiple. Ultimately, we showcase
different methods for using depth to augment neural style
transfer.

1. Introduction
In the last few years, we have witnessed an explosion in

the number of research papers and web/phone applications
(e.g. Prisma) performing style transfer techniques on pho-
tos. Typically in style transfer, a provided content image is
modified to exhibit salient features of a style image, with-
out affecting the nature of the content of the original image.
The resultant pastiche image typically incorporates the style
of the style image with the content of the content image.

Techniques from deep learning have been applied to
tractably and efficiently perform ‘neural’ style transfer, but
those techniques have been typically applied to 3-channel
(RGB) images. With the rising popularity of dual-camera
phones and other sensors capable of estimating depth, we
expect three-dimensional neural style transfer to be an
appropriate extension of two-dimensional style transfer’s
beauty. In this paper, we investigate applications of depth-
aware neural style transfer to images where depth is either
available as a fourth channel, or estimated via deep learning.

Specifically, in this project we formulate depth-
dependent style transfer, by:

1. Implementing a depth-based mask to the style and con-

tent loss functions typically used in neural style trans-
fer

2. Implementing a depth estimation network and loss
function which tries to match the depth of the pastiche
with the estimated depth of the content image.

With these adjusted and introduced losses, we can use depth
information to create depth-dependent blending effects (e.g.
stronger blending in the background of an image).

In task 1, we input single RGB-D content images ob-
tained from the NYU Depth v2 Dataset [10] along with
either single or multiple artistic style images and use an
iterative loss-minimization approach [2] to output single,
3-channel (RGB) stylized images, where the magnitude of
stylization is a function of depth.

In task 2, we input single RGB content images and run
them through a depth prediction network prior to optimiza-
tion. When stylizing our pastiche, we run it through the
same depth prediction network and try to minimize the dif-
ferences between estimated depths of our pastiche and our
content image, while trading off between unmasked content
and style losses. Again, our output is a single, 3-channel
(RGB) stylized image.

2. Related Work
The algorithm for iterative neural style transfer is intro-

duced in [2]. The main challenge of style transfer - the sepa-
ration of an image content from the style - was addressed by
using image representations acquired from the pre-trained
Convolutional Neural Networks (CNN), i.e. 16-layer VG-
GNet [12]. The utility of the CNN is its capability to extract
high-level image information through its feature represen-
tation. The authors show that one can can extract feature
representation of both content and style images from the
pre-trained CNN, and generate a new image by minimizing
a loss function which balances between content and style
(formulated in Section 3.1).

In iterative, or optimization-based style transfer, this is
done by iteratively modifying an originally white-noise in-
put through backpropagation of an appropriate loss func-
tion. This enables the generation of a new image (trained
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on our white noise input instead of the architecture’s pa-
rameters) with the desired style and content (i.e. content
reconstruction) [9, 2].

Guided style transfer is explored in [3]. The authors
show that you can guide the areas of stylization in the pas-
tiche by applying a masking guidance channels T r

l to the
image, which they specify can be “either a binary mask for
hard guidance or real-valued for soft guidance”. In Section
3.2 we formulate a depth-dependent mask for soft guidance
on both our content and style losses.

Depth-aware style transfer is explored in [8]. The au-
thors explore implementing a depth prediction network on
both the content image and the stylized pastiche, and adding
a loss term that tries to match the two. Doing so en-
sures that the pastiche image still portrays salient landmarks
at their appropriate depths, and that the stylization of the
content image does not tarnish the three-dimensional con-
tent aspects. Self-supervised monocular depth estimation
has been implemented via a feed-forward network. The
Monodepth2 feed-forward depth prediction network and
has recently enjoyed high qualitative and quantitative suc-
cess [5].

An alternative to iterative style transfer is network-based
style transfer, in which one trains a style-specific feed-
forward network to perform style transfer on a content im-
age in a single forward pass [7, 13]. While training this
feed-forward network is slow, it can be sped up by using in-
stance normalization layers [14]. This has been further ex-
tended to train a feed-forward network for image generation
with any arbitrary style [4]. Image-to-image translation us-
ing generative adversarial networks (CycleGAN) has also
become a popular approach to style transfer [15]. Due to
their training complexity, we do not explore these methods
in this paper.

3. Methods
3.1. Naive Style Transfer

Naive iterative style transfer is performed by initializing
a white-noise pastiche image and running gradient-based
optimization on the pixels of the pastiche image in order to
minimize a multi-objective loss function. This method re-
lies on a pre-trained object detection network to propagate
images through. Using such a pre-trained networks allows
us to extract and compare high-level content and style im-
age information. During the optimization, the weights in
the feed-forward net remain fixed - only the pixel values in
the pastiche image change.

In order to capture features of the content image and the
style of style image, it is useful to define a loss function
which trades off between the two [2]:

Ltotal = αLcontent + βLstyle.

In order to enforce smoothness in the pastiche image, we
add on a regularization term to reduce pixel-to-pixel varia-
tion:

Ltotal = αLcontent + βLstyle + γLtv.

To represent the content of the image, we define F l ∈
RNl×Ml , a feature response in layer l where Nl is the num-
ber of filters and Ml the flattened feature representation
shape (height × width). This enables us to set up a con-
tent loss which compares feature representation from the
generated image (F l) and real image (P l, which has shape
equivalent to F l).

Lcontent =
1

2

∑
i,j

(F l
i,j − P l

i,j)
2

The style is represented through the Gram matrix Gl ∈
RNl×Nl , which describes the feature correlations of differ-
ent filter responses. This allows us to represent the texture
information without the spatial content arrangement [2]. We
define single layer contribution and total style loss below:

Lstyle =

L∑
l=0

ωlEl

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij −Al

ij)
2.

where ωl is the weighting factors, El is layer loss contri-
bution, Gl is the Gram matrix of our pastiche and Al is its
equivalent for our style image.

We now select layers at which to compare style and con-
tent. Based on [2], style loss should include losses dis-
tributed across layers to maintain the structure of the style.
However, for the content loss only a single layer should be
considered. In order to make our pastiche appear similar
to the content image, it is beneficial to pick a lower layer
to compare content. To make it appear more artistic, it is
beneficial to pick a higher layer, as it represents a high-level
feature representation of the content of the image without
specific pixel to pixel matching. The approach is well rep-
resented in the Fig. 2 in [2].

To enforce smoothness, we define the regularizing pixel-
to-pixel variational loss as

Ltv =

3,H−1,W∑
c=1,i=1,j=1

(xi+1,j,c − xi,j,c)2

+

3,H,W−1∑
c=1,i=1,j=1

(xi,j+1,c − xi,j,c)2.

Once we choose appropriate relative weights and layers,
we can perform optimization on the pastiche image while
keeping the network weights fixed.



3.2. Masked Content and Style Losses

To extend style transfer to the depth dimension, we for-
mulate ways in which we can use depth information in order
to guide style transfer. Namely, we take inspiration from [3]
to formulate both masked content losses and masked style
losses.

We can adjust our content loss function by forcing some
guided regions of the pastiche to match more closely to the
content image compared to other regions:

Lcontent =
1

2

∑
i,j

(γc(d
l
i,j)� (F l

i,j − P l
i,j))

2.

Here we can use γc to apply an element-wise function to
our depth map at layer l in order to make appropriate be-
havior occur. An example of a useful functions γc might
apply a linear transformation to transition depth to lie be-
tween 0.8 and 1.0 instead of 0.0 and 1.0 (since a depth of
0.0 would produce an image with no content weighting a
particular region).

We can formulate masked style loss in a similar fashion,
this time in the Gram matrix formulation. The matrix Gl is
modified accordingly to include depth effects, where γs is a
function of depth.

Gl
ij =

1

ηl

∑
k

(γs(d
l
ik)� F l

ik)(γs(d
l
jk)� F l

jk)

ηl = γs(dl)
2
,

where γs indicates the mean of the matrix γs(dl), a neces-
sary scaling factor since we do not adjust the Gram matri-
ces of our style image. Note that again, γs enables us to
control which parts of the image are targeted with the spe-
cific style. When it is set uniformly to one, we obtain our
original Gram matrix formulation. An example of a useful
function for guided style transfer is the sigmoid function, σ.
Using γs(d) = σ(20(d − 0.5)) would cleanly separate the
background from the foreground.

Once we have formulated these guided losses, we may
use the same iterative style transfer methods described in
Section 3.1. Results are shown in Section 5.2.

3.3. Depth Loss

A different expansion to the method introduced in sec-
tion 3.1 was introduced by [8] . Apart from the content and
style losses, additional depth component was introduced to
the total loss. The depth loss and total loss are shown in the
equation below. The objective of the added depth loss is to
acquire a pastiche similar in style and content but also with
a similar portrayed depth as the content image.

Ldepth =
1

HW
‖φ(Ioriginal)− φ(Ipastiche)‖2

Ltotal = αLcontent + βLstyle + γLdepth

Though we assume a known depth channel in Section
3.2, it is still important to have a method of evaluating the
depth in the pastiche image. A depth prediction network
with a per-pixel minimum reprojection loss and masked
photometric loss is presented in [5]. We use their depth
prediction implementation 1 to estimate depth for 3-channel
content images which lack a depth field.

4. Datasets and Networks

For the methods presented in 3.2, we use the NYU Depth
v2 dataset [10], which includes a significant number of
RGB-D images we can stylize. The dataset includes 1449
densely labeled pairs of 480x640 pixel RGB and Depth im-
ages recorded by a Microsoft Kinect.

We use a pre-processing script to filter raw depth data
and download the dataset into a usable format. In order to
have depth data be usable as a mask at different layers, we
first normalize the filtered depth data on a zero-one scale.
We additionally normalize pixel data to a zero-one scale. To
portray depths accurately at each layer which we calculate
losses, we interpolate our depth data to be of same height
and width of convoluted image data at that layer.

For the method presented in Section 3.3, we don’t need
RGB-D data as depth estimation is done by the neural net-
work. Hence two images shown in Fig. 9 and Fig. 10 are
considered. The second image is an example of ideal depth
prediction taken from [5].

For style data, we use selected artworks that are typically
benchmarked with. Examples include Van Goghs ‘A Starry
Night’, Kandinsky’s ‘Composition VII’, and Munch’s ‘The
Scream’.

For our feed-forward convolutional neural network for
capturing image features, we are using Squeeze Network
[6] and VGG16 [12], with weights trained on the ImageNet
training dataset. The SqueezeNet is useful for the method
described in Section 3.2 because of its small size and low
number of parameters, making for quick optimization. For
the method described in Section 3.3 we consider VGG16 as
it provides additional detail in the pastiche image and make
it easier to highlight differences caused by depth component
of the loss. For the depth estimation we use implementation
done in [1], which uses an adapted ResNet architecture de-
scribed in [5].

5. Results

We implemented the aforementioned methods using Py-
Torch [11]. Most of the parameters involved in the style
transfer optimization must be tuned image-wise to achieve

1available at https://github.com/nianticlabs/monodepth2



satisfying results. Adam was used to optimize the loss be-
cause it speeds up optimization. For content loss, we use
one of the lower layers to capture realistic content. Several
layers across the network are used for the style loss.

5.1. Naive Style Transfer

For baseline results, we have implemented 2D style
transfer via optimization of a randomly initialized image
to trade off between the aforementioned content and style
losses, including a variational regularizer to reward conti-
nuity in the image. Results can be seen in Fig. 1.

Figure 1: Content Image + Style Image = Pastiche Image
with Vanilla Style Transfer.

We also chose a content image from the NYU Depth v2
dataset (Fig. 2a), with “The Scream” for the style (Fig. ).
The pastiche in Fig. 2c was produced optimizing a naive
style transfer loss, as a basis for further quantitative and
qualitative comparison with 3D-style transfer. The loss con-
verged to 3195 in 29.53s on a CPU, in 300 iterations (learn-
ing rate is decayed from 3 to 0.1 at iteration 180).

5.2. Masked Content and Style Losses

We implemented the 3D style transfer, masking the con-
tent or the style loss with a function of the depth channel of
the input RGB-D image. The resulting depth mask for the
presented example is shown in Fig. 3.

The pastiche images generated with a style mask and
with a content mask are shown in Fig. 4 and Fig. 5 re-
spectively. If we compare the pastiche generated without
mask (Fig. 2c) and the pastiche generated with the style
mask (Fig. 4), it is clear that no style is applied at the back-
ground of the picture, were the depth mask is dark (see
Fig. 3). Similarly, the background content has disappeared
on the pastiche generated with the content mask (Fig. 5).
From these observations, we can conclude that applying a
mask to content or style hides the chosen feature from the
depth-selected place. Still, using the content mask empha-
sizes style where the content is masked, and using the style
mask emphasizes content were the style is masked. Playing

(a) Content (b) Style

(c) Pastiche image

Figure 2: RGB-D content + style = Pastiche image (vanilla
style transfer)

Figure 3: Processed depth, γ(d) = 1− σ(20(d− 0.8))

Figure 4: Style transfer with a style mask

around with both of the masks and their parameters, we are
able to generate a wide range of depth-dependent mixtures
of style and content.

For the style mask, the loss converges in 300 iterations
to 3353. For the content mask, it converges in 300 itera-
tions to 2911. As a reminder, the basic 2D style transfer



Figure 5: Style transfer with a content mask

Figure 6: Evolution of the loss with iterations for basic
2D style tranfer, style masked and content masked 3D style
transfer

converged to a cost of 3195 in 300 iterations. Each of these
convergences have been established for the same set of hy-
perparameters.

In Fig. 6, we notice that the three examples converge in
300 iterations. In addition, it is clear that the evolution of
the cost has the same shape for the 2D and 3D style transfer.

The style loss function is in average 1.32% longer to
compute (on a CPU) if the style must be masked. Simi-
larly, the content loss function is in average 1.68% longer
to compute (on a CPU) if the content must be masked. The
average was computed over 300 samples.

This result is satisfying considering that these functions
are computed 300 times over the optimization of the loss
which takes approximately 40s on the CPU.

Finally, we demonstrated the ability to perform style
transfer with two different styles, the blending of the two
styles being dependent on the depth. This was performed
adding a second style loss function to the loss. The first
style loss is computed based on the first style (Fig. 7b) and

(a) 1st style: depth mask (b) 1st style

(c) 2nd style: depth mask
(d) 2nd style

Figure 7: Pastiche of 3D-style transfer with two styles

the first depth mask (Fig. 7a). The second style loss is com-
puted based on the second style (Fig. 7d) with the second
depth mask (Fig. 7c). The resulting pastiche is shown in
Fig. 7. It is clear that the first style is applied to the back-
ground of the input image when the second style is applied
to the foreground. This demonstrates the ability to control
style transfer using depth.

5.3. Depth Loss

The baseline for the style transfer with depth loss is
the naive style transfer method implemented with VGG16
architecture [12]. Two example images are presented in
Fig. 9a and 10a with their respective naive pastiche images
(Fig. 9c and 10c). To increase the effectiveness of the style
transfer, the content layer is one of the last (28th). Decrease
in the content layer number, make the pastiche look closer
to the content image. The output of the depth prediction
network is shown in Fig. 9b and 10b [1]. As can be seen, in
Fig. 9 depth estimation performs acceptably well, whereas
Fig. 10’s depth map is much closer to reality. Fig. 10 from
[1] represents the ideal scenario for the depth prediction



network. The pastiche images with depth loss component
are shown in Fig. 9d and 10d. Based on the outputs, style
transfer with depth loss definitely maintains the content and
the style of the image acceptably when tuned appropriately.
Apart from the image saturation which we consider random
(it is heavily affected by the numerous parameters which
are difficult to analyze at the early stage of parameter tun-
ing), the main difference is the sharpness of the image de-
pending on the depth. It can be seen that the parts of the
image with shallower depth are significantly sharper than
the one further, e.g. in Fig. 9, the sky and the tower appear
blurry whereas the bus’s sharpness remains comparable to
the naive implementation.

Moreover, apart from the sharpness variation depending
on the depth map, characteristics of the objects with low
depth (i.e. shallow depth) are heavily altered. When we
look at the front wheel and the bonnet of the car in the
Fig. 10, we can notice that it remains well reconstructed
apart from the parts which are not visible in the depth map,
e.g. in the depth map, the wheel is flush with the body-
work of the vehicle whereas in the original image and naive
style transfer pastiche is not. In the style transfer with depth
component, wheel is still there thanks to the content loss
component but it is flush with the bodywork of the car to
align with the depth map. It implies that with current pa-
rameters, the depth map is prioritized over the visual shape
of the image purely based on the content feature represen-
tation. The same trend is visible in the reconstruction of the
curve of the bonnet of the car.

As can be seen in the Fig. 8, the loss convergence for the
style transfer with depth component converges to the value
of approx. 10000 (heavily depends on the hyperparameters)
but it is heavily unstable. It is challenging to optimize the
loss with extra depth component. In this method, on top of
the forward and backward pass through the feature repre-
sentation neural network (in this case VGG16), we add a
pass through depth prediction network based on ResNet at
each optimization step. It makes it infeasible to run solely
on CPU. What is more, ”convergence” to acceptably visu-
ally image took significantly more iterations which forced
us to use a GPU, Nvidia Tesla K80 and P100 were used.
The benefit of switching from CPU to GPU in this scenario
is clear. The boost of 315%s in the compute speed of one
iteration (approx. 3.8s with CPU per iteration). For com-
parison, one iteration of naive style transfer and the style
transfer with depth component run on GPU take 0.016s and
1.21s, respectively, which makes it approx. 75 times longer
to compute per iteration. The parameters used for the im-
ages generated in the Fig. 9 and 10 are: image and style
size: 192, content layer: 28, content weight: 6e-2, style
layers: multiple layers with weights decreasing along the
layer number, tv weight: 2e-2 and depth weight: 10000.
The depth weight was increased to verify its influence on

Figure 8: Evolution of the loss with iterations for basic
2D style tranfer, style masked and content masked 3D style
transfer

the image creation (between 1 and 200000). However, the
complexity of each optimization step and the number of it-
erations make the extensive analysis impossible as a course
project. Hence, further hyper-parameters optimization is a
necessity as a future work.

6. Conclusion and Future Work
The main objective of the project was to explore differ-

ent methods to perform depth-dependent style transfer.
The first elaborated technique was to mask the pastiche
image with a depth-dependent mask during training in
order to “hide” some regions to the style or to the content
loss. As a result, the mix of style and content will differ
depending on the depth. This technique is efficient: its
convergence time is similar to basic 2D iterative style
transfer and the output pastiches are satisfying. However,
it is reliant on RGB-D images. If we were to continue
this project in the future, we could incorporate a depth
estimator as a pre-processor that would estimate the depth
map for a basic RGB image. Then, the 3D style transfer
could be applied to any kind of images.

In the second technique, we investigated adding a depth
loss component to the basic style transfer loss which ensures
that the estimated depth of the pastiche matches pixel-wise
with the estimated depth of the content image. This method
doesn’t rely on implicit depth data, so it can be applied
to any image. The downside of this method is its compu-
tational efficiency: depth estimation must be computed at
each iteration and the integration of the two networks (loss
optimization and depth estimation) is not well optimized.
In the future, it would be exciting explore more efficient
incorporation of depth prediction network. Further, hyper-



(a) Original Image

(b) Depth Map

(c) Naive style transfer

(d) Style transfer with depth component

Figure 9: Example image

parameter tuning is definitely a necessity to perform style
transfer at high resolution images.
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