
1

Hyperparameter Tuning using Gaussian Process
Multi-Arm Bandits

Arec Jamgochian, Bernard Lange

Abstract—Learning useful models from data generally requires
fixing hyperparameters to either define model class or opti-
mization procedure. Choice of hyperparameter can have a huge
impact on model performance, but hyperparameter tuning is
often labor-intensive, costly, and sub-optimal. Hyperparameter
tuning can be automated by using a surrogate model to regress
the choice of parameter to model score, then searching using
some heuristic. In this paper, we use Gaussian Process guided
by expected improvement exploration to efficiently perform
Bayesian hyperparameter optimization. Our framework1 can be
easily integrated with a wide range of problems requiring high-
dimensional hyperparameter optimization, including parameters
that are discrete. We showcase our framework on a number of
examples, including choosing optimal regularization coefficients
for regression and optimizing neural network architecture for
image classification.

I. INTRODUCTION

When trying to learn a good function to model data,
there are usually parameters that one must specify before
learning takes place. These hyperparameters generally either
parametrize a family of models to be learned, or optimization
methods to learn them. Choosing the correct hyperparameters
determines the success of the model and generally involves
manual tuning which is often the source of much frustration.
The standard practice of hyperparameter tuning usually alter-
nates grid search with coordinate descent, as the tuner will
typically focus on adjusting one parameter at a time.

One can automate the tuning of hyperparameters by building
a surrogate model to regress the joint hyperparameter space
to model score, then select hyperparameters using surrogate
optimization. Since model training and evaluation can be
quite expensive, we must use an efficient method to select
candidate hyperparameters for evaluation. This can be viewed
analogously to a multi-armed bandit problem, where we have
to balance the exploration of choosing hyperparameters in a
multi-dimensional design space to gather information with the
exploitation of choosing the best possible hyperparameters.
Gaussian Processes are a type of surrogate model that allow
one to quantify uncertainty about a prediction across the design
space [1]. Due to their incorporation of uncertainty, they lend
themselves particularly well to surrogate optimization.

One can optimize exploitation in the hyperparameter search
by selecting points that minimize the predicted mean of
the Gaussian Process. One can optimize for exploration by
selecting points where uncertainty about the predicted mean
is maximal. A simple yet powerful heuristic that has proved

1Available at:
https://github.com/sisl/GaussianProcessBandits.py

particularly effective in the bandit setting is upper-confidence
bound (UCB) exploration, in which new points are selected by
minimizing a weighted sum of the two which represents some
confidence bound quantile. Srinivas et al. derive regret bounds
for the associated Gaussian Process upper confidence bounds
(GP-UCB) algorithm, implying quick convergence [2].

An alternative heuristic for surrogate optimization using
Gaussian Processes is the expected improvement (EI), or the
amount by which the best score is expected to improve [3].
Maximizing expected improvement weighs the likelihood that
a design point improves a model’s score with the amount of
improvement (Eq. 3). Expected improvement exploration has
been shown empirically to converge more quickly to areas of
the design space with higher fitness. An example of expected
improvement exploration using Gaussian Processes can be
seen in Figure 1.

Fig. 1. Expected improvement exploration using Gaussian Processes [1].

Google’s black-box hyperparameter tuning service, Vizier
[4] uses Batched Gaussian Process Bandits [5] with a Matern
kernel with automatic relevance determination [6] and the
expected improvement acquisition function [7]. One can im-
plement discrete parameters by embedding them as real num-
bers and represented categorical parameters via one-hot en-
coding [4]. In either scenarios, the Gaussian Process regressor
provides a continuous and differentiable function which can
be traversed using various optimization methods and when
the convergence is achieved, the result is rounded to the
nearest feasible point. A visualization of some choices for and
convergence of hyperparameters can be seen in Figure 2.

In this project, we implement our own version of Gaussian
Process Bandits in order to help with our future hyperparam-
eter tuning needs. Our implementation is described in Section
II. To test out our Gaussian Process Bandits implementation,
we learn the best set of hyperparameters for models targeting
toy problems, described in Section III. Our problems range
from choosing the best regularization parameters for regres-
sion, to choosing the best neural network architectures for
image classification. We conclude in Section IV.

2

Fig. 2. The Parallel Coordinates visualization.

II. IMPLEMENTATION

The Gaussian Process Bandits algorithm works by attempt-
ing to regress hyperparameters in the design space to model
scores. As different models are evaluated at different hyper-
parameter locations, the Gaussian Process is collapsed at the
points in design space associated with those hyperparameter
locations. For any model problem class, the user must specify
functions to map between design space and hyperparameter
space. The user must also specify a training and testing
function to return a model score. The algorithm then iterates on
choosing which hyperparameters to try next, training a model,
and returning a model score.

To allow for our implementation to generalize to many
classes of models, we perform the hyperparameter search
in the design space of [0, 1)n where n is the number of
hyperparameters in the problem. We separate the problem
of choosing hyperparameters from evaluating the model by
requiring that each model class implement three functions:
• decode(arr) to set model hyperparameters appropriately

when passed in an array in [0, 1)n,
• encode() to encode and return the model’s set hyperpa-

rameters as an array in [0, 1)n,
• train test cv(data) to evaluate the model on a dataset

(with whatever validation scheme is appropriate) and
return a score to be minimized.

Note that the decoding scheme does not need to map to a
continuous hyperparameter space. One can incorporate dis-
crete hyperparameters by simply using decode to separate the
design space into discrete bins (e.g. if setting a binary option).
As a result, an encoding of a decoding does not necessarily
map to the originally chosen design point.

With these functions implemented on each model class, the
unbatched Gaussian Process Bandit implementation follows
the following workflow, which is visualized in Figure 3:

1) Initial model evaluation: perform model evaluation us-
ing the default hyperparameters for the model. Add the (design
point, model score) tuple to the Gaussian Process

2) Sample candidate design points: sample m candidate
points randomly in [0, 1)n. The number of candidate points m
can be extremely large since evaluating their expected mean
and variance using the Gaussian Process requires inverting a
matrix independent of the number of candidate points. Cur-
rently a random sampling plan is used, but one can implement
a uniform sampling plan to spread samples better across the
design space.

3) Estimate mean and variance of score at candidate design
points: marginalize the Gaussian Process to form the posterior
at the m candidates. With a zero mean function, kernel
function K, and Gaussian Process noise parameter ν, the
predicted mean µ̂ and variance of the predicted mean σ̂2 at
the candidate points can be found using

µ̂(x) = K(x, X)K(X,X) + νI)−1y (1)

σ̂2(x) = K(x, x)−K(x, X)(K(X,X) + νI)−1K(X, x), (2)

where x is a vector of candidate points, X is a vector of
previously evaluated design points, and y is a vector of their
associated model scores. The noise parameter ν is included
to overcome variability in model score given differences in
scores of models trained with the same hyperparameters. In
our experiments, we use the squared exponential kernel, with a
single characteristic length scale, K(x, x′) = exp(

−||x−x′||22
2l2).

4) Choose the best candidate design point: choose the
design point that maximizes expected improvement. Once
the predicted mean and variance of the predicted mean are
calculated, expected improvement can be calculated at each
candidate design point as

Ey(I(x, y)) =(ymin − µ̂(x))P (y ≤ ymin | µ̂(x), σ̂2(x))
+ σ̂(x)N (ymin | µ̂(x), σ̂2(x)),

(3)

where ymin is the minimum score observed thus far.
5) Set the model hyperparameters and evalulate the model:

set the hyperparameters by decoding the best candidate design
point. Evaluate the model using train test cv(data) and return
the model score. Add the (design point, model score) tuple to
the Gaussian Process. It is important to add the original design
point rather than an encoded version of the decoded design
point to the Gaussian Process to avoid continually exploring
the same space in discrete problems.

6) Iterate: return to step 2 while iterations remain. An
additional intermediary step before iterating could include
fitting Gaussian Process parameters (i.e. characteristic length
scales and noise variance) to best fit observed data. This could
be done by using a gradient-based method (e.g. L-BFGS)
to minimize the negative log likelihood of observed model
scores given evaluated design points and Gaussian Process
parameters. We could use this to better learn dependencies
between hyperparameter dimensions (in the form of a non-
uniform kernel characteristic length matrix), and ultimately
speed up convergence.

III. EXPERIMENTS

Our optimization framework is evaluated on benchmark
tasks with known optimal solutions discussed in the following
subsections.

A. Ridge Regression

The task, also known as linear regression with Tikhonov
regularization, is to find the optimal regularization constant
λ ∈ R++ which minimizes model mean squared error on
a holdout set. The optimal regularization constant reduces
variance in the conventional linear regression approach by

3

Fig. 3. Hyperparameter tuning using Gaussian Processes guided by expected improvement exploration.

introducing a Gaussian prior on the model parameters w. This
is equivalent to adding an L2-norm on the model parameters
to the linear regression cost function J , as shown in Equation
4 [8].

J(w) =
1

N

N∑
i=1

(yi − wT xi)2 + λ||w||22 (4)

To use with our hyperparameter optimization framework,
the decoding scheme maps to values of L2-norm coefficient
λ in natural log space. For any given value of λ, the optimal
model parameters are determined explicitly using the closed
form solution w = (XTX+λI)−1XT y, where X is a matrix
of data point and y are the values to regress to. We perform
k-fold cross-validation and minimize the mean squared error
as a function of λ, which is provided as the score for our
optimization framework to minimize. We use this toy problem
to compare Gaussian Process Bandits to a random search. The
result, shown in Figure 4, visualizes quicker convergence to
the optimal score value.

Fig. 4. Best performing model score vs. iterations of hyperparameter
search for Ridge regression. Comparison between Gaussian Process Bandits
algorithm and a random search.

B. Elastic Net Regression

Elastic Net regression is an extension of the previous
problem, where we also add an L1-norm regularization term to

our loss function. L1 regularization has the added benefit of not
only reducing model variance, but also encouraging sparsity
in the model parameter vector w. Now we must search over a
2D space for optimal L1- and L2-norm weighting parameters
λ1 and λ2 as shown in Equation 5 [9].

J(w) =
1

N

N∑
i=1

(yi − wT xi)
2 + λ1||w||1 + λ2||w||22 (5)

The hyperparameter decoding now maps to values of both
L1 and L2 regression weights λ1 and λ2 in natural log
space, respectively. The model parameters w are identified by
performing gradient descent using Scikit-Learn package [10].
The rest of the implementation is equivalent to that of Ridge
regression. The results are shown in Figure 5 with similar
convergence properties as in Ridge regression.

Fig. 5. Best performing model score vs. iterations of hyperparameter
search for Elastic Net regression. Comparison between Gaussian Process
Bandits algorithm and a random search.

C. Gaussian Mixture Model

In this unsupervised learning example, the task is to de-
termine the optimal number of clusters k ∈ N to use to
fit a Gaussian Mixure Model (GMM) to a set of data. This
is done by picking k, fitting a GMM using the Expectation
Maximization algorithm (EM), and trying to maximize the log
likelihood of a holdout set of data [8].

4

The decoding maps [0, 1) to a discrete number of clusters
k between 1 and kmax. During training and testing, we fit
70% of a dataset to a GMM with k centers, then evaluate the
average negative log-likelihood on the holdout data. We repeat
this process m times choosing the holdout data at random,
and return a single averaged negative log-likelihood to be
minimized as a function of k. The model converges quicker to
the optimal number of clusters than a conventional grid search
approach.

D. Neural Network Architecture Design

In our final example, the task is to design the optimal neural
network architecture to perform the well-studied problem of
digit classification using the MNIST dataset of handwritten
digits [11]. The general architecture design, as shown in Figure
6, consists of flattened input layer, a series of hidden layers
with activation function and dropout probability determined
by the optimizer, and the output classification layer.

Input
Image
(28,28)

Flattened
Input
(784,)

Hidden
Layer

(e.g. ReLu)

Output
Layer

Cross-
Entropy

Loss

Fig. 6. General fully-connected neural network architecture.

The score to be minimized is the cross-entropy loss for
network output y and correct class as shown in Equation 6.

J(y, class) = − log

(
exp(y[class])∑

j exp(y[j])

)
(6)

The hyperparameter search domain and the decodings from
a point in design space (denoted point) to hyperparameter
space are as follows:

1) Hidden layers: the total number of hidden layers. The
decoding to hyperparameter fields with a predefined maximum
number of hidden layers (5) is:

HidLayers = int(point[0] ∗MaxHidLayers) + 1

2) Units per hidden layer: the number of hidden units in
each hidden layer, which remains fixed in this architecture. The
decoding to hyperparameter field with a predefined maximum
number of hidden units (64) is:

HidUnits = int(point[1] ∗MaxHidUnits) + 1

3) Activation function type: : whether to use the Rectified
Linear Unit (ReLU) or the Hyperbolic Tangent (Tanh) activa-
tion function. The same activation function is applied after all
layers except the output layer. The decoding is implemented
using the Near Integer function (Nint):

Activation =

{
ReLU(), if Nint(point[2]) = 0

Tanh(), otherwise

4) Dropout probability between layers: the probability of
any given node being zeroed out. The value is the same
for all hidden layers. The decoding from design space to
hyperparameter space is:

Prdrop = point[3]

Each model is tuned using the Adam optimizer with default
parameters as implemented in PyTorch. Training is done with
a batch size of 32 for 200 epochs [12], [13]. In future work,
the optimization hyperparameters, batch size and convergence
criteria can be added without increased complexity of the im-
plementation. The training and testing datasets are predefined
according to [11] to enable valid comparisons. The training
set size and test set size are 60,000 and 10,000 samples,
respectively.

Table I shows the top five architectures found during 200
iterations of running the optimization algorithm. As can be
seen, the best-performing architecture on the test set is similar,
given the constraints such as maximum number of hidden
layers and hidden units, to the architecture found in [14]. The
best architecture contain one hidden layer, 62 hidden units,
ReLU activation function and the dropout probability of 0.149.

TABLE I
TOP 5 BEST-PERFORMING ARCHITECTURES.

Hidden Layers Units/Layer Activation Dropout Pr

1 62 ReLU 0.149
3 43 Tanh 0.076
1 38 Tanh 0.082
3 33 ReLU 0.100
3 62 ReLU 0.240

IV. CONCLUSIONS

In this paper, we explored ways to automate the costly,
time-intensive, and sub-optimal process of hyperparameter
tuning. Specifically, we implement a Bayesian hyperparameter
optimization framework using Gaussian Process Bandits. We
use a Gaussian Process as a surrogate model to regress
hyperparameter design space to model score, and expected
improvement exploration to efficiently guide hyperparameter
search. We generalize our framework by mandating a decoding
scheme to decode points from a common design space to a
continuous or discrete hyperparameter space specific to many
classes of problems.

We validate our implementation with four different exam-
ples - ridge regression, elastic net regression, clustering using

5

Gaussian Mixture Models, and neural network architecture de-
sign for digit classification. In all cases, we efficiently converge
to well-performing solutions. Our framework is available at
github.com/sisl/GaussianProcessBandits.py.

In the future, we will make improvements to our Gaussian
Process Bandits implementation to better utilize CPU and GPU
capabilities by a) vectorizing kernel matrix formation and b)
batching the design evaluations to enable algorithm paral-
lelization. Additionally, we will continually adapt our choices
of Gaussian Process parameters (characteristic length matrix,
noise variance, and kernel function) to better fit observed
data and quicken convergence. We will also investigate the
variation of possible neural network designs by adding more
operators (e.g. convolution) and by adding a capability to tune
optimizer’s hyperparameters (e.g. learning rate, momentum).

REFERENCES

[1] M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization.
Mit Press, 2019.

[2] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

[3] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[4] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings

of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, 2017, pp. 1487–1495.

[5] T. Desautels, A. Krause, and J. W. Burdick, “Parallelizing exploration-
exploitation tradeoffs in gaussian process bandit optimization,” Journal
of Machine Learning Research, vol. 15, pp. 3873–3923, 2014.

[6] C. Williams, “Gaussian processes for machine learning,” University
Lecture, 2007.

[7] R. Benassi, J. Bect, and E. Vazquez, “Robust gaussian process-based
global optimization using a fully bayesian expected improvement cri-
terion,” in International Conference on Learning and Intelligent Opti-
mization. Springer, 2011, pp. 176–190.

[8] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[9] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

	Introduction
	Implementation
	Initial model evaluation
	Sample candidate design points
	Estimate mean and variance of score at candidate design points
	Choose the best candidate design point
	Set the model hyperparameters and evalulate the model
	Iterate

	Experiments
	Ridge Regression
	Elastic Net Regression
	Gaussian Mixture Model
	Neural Network Architecture Design
	Hidden layers
	Units per hidden layer
	Activation function type
	Dropout probability between layers

	Conclusions
	References

