
Learning Boosts with Modified Di↵erential Q-Learning

Damir Vrabac, Arec L. Jamgochian, Anmol M. Kagrecha

June 2021

Abstract

A common reinforcement learning objective is for an agent to learn how to behave optimally in an

environment when able to query the environment with actions to observe state transitions and immediate

rewards. Recent work achieves this objective without forcing discounting by maintaining an estimate of

reward rate and performing temporal di↵erence updates for reward received relative to that rate (Wan et

al., 2020). In this project, we extend these updates to provide boosts towards convergence in environments

where the joint state and action space can be partitioned usefully. In environments where rewards are

tied within an aptly chosen partition, our method, Modified Di↵erential Q-Learning, provides faster

convergence. We introduce two environments which exhibit such partitions: One-step Rewards and

Slippery GridWorld. We compare cumulative and average regret received by our method, the method

of Wan et al., and vanilla Q-Learning, finding that our method outperforms the others.

1 Introduction

In this project, we consider the agent’s environment to be a Markov decision process (MDP). In particular,

we consider the average reward formulation of MDPs. In this environment, the experience is considered to

be continuing and not broken up into episodes. An agent seeks to maximize the average reward per step or

the reward rate, which we denote by �⇤. Average reward MDP formulation is considered an important step

in developing agents that can operate in real world environments.

Popular reinforcement learning algorithms like Q-Learning may not converge in the average reward setting

and would require a a discount factor to avoid diverging. Introducing a discount factor might lead to policies

that are not optimal when trying to maximize the average reward per step. Even in environments where

Q-learning learns an optimal policy, the learning is slow in practice and requires a lot of hyper-parameter

tuning. This is largely because Q-values get updated very slowly and there is no e↵ective information transfer

among Q-values.

Di↵erential Q-Learning (DQL) is an excellent algorithm proposed in Wan et al., 2020 which enjoys sound

theoretical guarantees under very mild conditions and works quite well in practice. In addition to maintaining

Q-values, DQL also maintains a statistic for the average reward. Maintaining this statistic helps in e↵ectively

transferring information across state-action pairs, which leads to much faster convergence.

One of the issues with DQL is that it tries to learn an asymptotic quantity, i.e., reward rate. It is

reasonable to expect that if the environment exhibits phenomena that provide high rewards which are easier

to learn than the reward rate, then learning appropriate statistics about the environment in addition to the

reward rate would lead to better performance.

In this work we introduce One-step Rewards and Slippery GridWorld, two environments that captures

how well an agent learns phenomena across di↵erent time-scales and its ability to leverage what it has learned

1

to perform well in practice. Moreover, we extend the temporal di↵erence in the Di↵erential Q-Learning

(DQL) algorithm to include statistics of partitions from the joint state and action space. Our proposed

algorithm, Modified Di↵erential Q-Learning (MDQL), outperforms DQL in both environments when the

partitions of the state-action pair set are chosen appropriate to the environment.

2 Background

This section provides background on Q-Learning, relative value iteration (RVI) Q-Learning, and di↵erential

Q-Learning.

2.1 Q-Learning

In a reinforcement learning environment, an agent makes decisions based on a past history of actions and

observations in order to maximize an internal notion of cumulative reward.

In a lot of reinforcement literature, three simplifying assumptions are made. The assumption of full

observability states that the observation Ot+1 an agent receives after from the environment after taking an

action At is actually the true state of the environment—that is to say Ot = St8t. The Markov assumption

states that future observations are conditionally independent of histories given the most recent action and

observation. That is to say, Ot+1 ? Ht | (Ot, At), or alternatively, P(Ot+1 | Ht) = P(Ot+1 | Ot, At). Finally,

an additional assumption is made that the agent receives the reward it must maximize from the environment,

as opposed to defining the reward for itself.

With these three assumptions, the reinforcement learning objective often becomes to design a system

in which the agent can learn to behave optimally when it does not know the internal dynamics of the

environment (which under these assumptions degenerates to P(St+1, Rt+1 | St, At)). However, the agent is

able to query the environment with actions to observe rewards and state transitions.

One way of achieving this reinforcement learning objective is through Q-Learning. In Q-Learning, the

agent stores statistics of the estimated return Q(s, a) in state s if the agent were to take action a immediately

and act optimally afterwards. The optimal policy can be extracted from a converged Q function by taking

actions which maximize Q in each state (e.g. ⇡(s) 2 argmaxa Q(s, a)).

Since the estimated cumulative reward in a non-terminating environment can be infinite, it is often

practical to introduce a discount factor � 2 [0, 1) and track the expected cumulative discounted reward

E[
P1

t=0 �
tRt+1] when starting in state s, taking action a immediately, and behaving optimally thereafter.

With the �-discounted formulation of reward, one can formulate the vanilla Q-learning update for Q by

computing a temporal di↵erence �t+1 between expected and received immediate reward, and by updating

the Q statistic at the visited state-action pair:

�t = Rt+1 + �max
a2A

Qt(St+1, a)�Qt(St, At) (1)

Qt+1(St, At) = Qt(St, At) + ↵t�t. (2)

Here we note that at each point in time, only a single Q statistic is updated (at St, At), where other

values stay the same1.

1If introducing eligibility traces to handle delayed reward, it is common to update more than one statistic in a single time
step to attribute rewards to former state-action pairs

2

It is shown that with certain assumptions on ↵t (e.g. non-summable but square-summable) and with a

su�cient exploration strategy, Q-Learning will converge to the optimal policy with respect to the discounted

cumulative return. In this paper, we use an ✏-greedy exploration policy, which chooses

At =

8
<

:
unif(A) w.p. ✏

unif(argmaxa Qt(St, a)) w.p. 1� ✏.
(3)

2.2 RVI Q-Learning

One significant downside to vanilla Q-Learning is that it assumes (or artificially forces) a � discount factor.

That is, it builds policies based on expected cumulative discounted return, as opposed to expected (non-

discounted) cumulative return. Unfortunately, making this simplifying discounting assumption can very

easily lead to non-optimal policies with respect to the true expected cumulative return. An example of this

is examined in Section 2.3.1.

In RVI Q-Learning (Abounadi et al., 2001), the assumption of discounting is relaxed. To prevent the

Q values from diverging (which they would, since reward is continually added while V (St+1) is no longer

discounted), a relative value function f(Q) is subtracted uniformly from all temporal di↵erences. The Q-

Learning update functions become

�t+1 = Rt+1 � f(Q) + max
a2A

Qt(St+1, a)�Qt(St, At) (4)

Qt+1(St, At) = Qt(St, At) + ↵t�t+1. (5)

RVI Q-Learning is shown to converge with some mild assumptions on f , which may be, for example, the

value at a fixed state.

2.3 Di↵erential Q-Learning

Unfortunately, the e↵ectiveness of RVI Q-Learning is highly dependent on the choice of f , a choice which

is hard to make a priori. Wan et al. formulate a version of Q-Learning which operates on the expected

cumulative reward rate when following a policy (Wan et al., 2020). The reward rate r⇤ is defined as

sup⇡ r(⇡, s), where

r(⇡, s) = lim
n!1

1

n

nX

t=1

E[Rt | S0 = s,A0:t�1 ⇠ ⇡]. (6)

The di↵erential Q-Learning algorithm implements the following updates:

�t = Rt+1 � R̄t +max
a2A

Qt(St+1, a)�Qt(St, At) (7)

Qt+1(St, At) = Qt(St, At) + ↵t�t (8)

R̄t+1 = R̄t + ⌘↵t�t. (9)

It is shown that under the assumption that for every pair of states, there exists a policy that can transition

from one to the other in a finite number of steps with nonzero probability, then R̄t will converge to r⇤ and

3

Qt will converge to a solution of q in the Bellman equation

q(s, a) =
X

S0,R

P(S0, R | S,A)(R� r⇤ +max
a0

q(S0, a0)) (10)

The proof is made by tying the di↵erential Q-Learning update to the RVI Q-Learning update.

2.3.1 Example: Delayed Reward Environment

To illustrate the necessity to consider the time-averaged reward of a non-discounted MDPs rather than the

average artificially discounted reward, consider an environment where an agent had the choice between a left

and right action from a root node. The left action explores a path in which an reward of +� is given to the

agent after one turn, while the right action explores a path in which a reward of +1 is given to the agent

after three turns. This environment is depicted in Figure 1.

Figure 1: Simple Delayed Reward environment. Though the optimal policy traverses the right path, the optimal
policy with artificial �-discounting will traverse the left path, collecting suboptimal reward.

Though intuitively, the optimal policy will continually traverse the right path, collecting an time-averaged

reward of 0.25, solving this environment with a discount factor of � (as is the case in Q-Learning) will lead

to a sub-optimal policy which continually traverses the left path. Di↵erential Q-Learning on the other hand,

would yield the correct policy since it operates on the true average return rather than the discounted return.

We make this comparison in Figure 2, where we show di↵erential Q-Learning leading to lower regret than

Q-learning when using an ✏�greedy exploration policy.

3 Methodology

In this section, we provide motivation for and describe our Modified Di↵erential Q-Learning algorithm, as

well as describe some environments in which we see it to be useful.

4

(a) Cumulative Regret (b) Average Regret

Figure 2: Comparison of cumulative and average regret between Q-Learning and di↵erential Q-learning in the
Delayed Reward environment.

3.1 Modified Di↵erential Q-Learning

In our modification of di↵erential Q-Learning, we take advantage of the knowledge that certain environments

have state-action partitions in which rewards for all state-action pairs in a particular partition may be tied

to one another. For example, you might consider an environment in which taking action a is always better

than taking action b, regardless of the starting state or true reward received. Our motivation is that this

knowledge might help to learn to act optimally quicker than di↵erential Q-learning.

We make this modification by introduction a new statistic B̄(�) which encodes the boost over average

reward R̄ an agent might expect when finding themselves in �, a subset of S ⇥ A. With this formulation,

we hope for R̄ to converge to the average reward received among all states and for R̄+ B̄(�) to converge to

the average reward received among all state-action pairs in � when following an optimal policy.

Our modified di↵erential Q-Learning (MODQ) update is as follows:

�t = Rt+1 � R̄t +max
a2A

Qt(St+1, a)�Qt(St, At) (11)

�t = Rt+1 � R̄t � B̄t(�t) + max
a2A

Qt(St+1, a)�Qt(St, At) (12)

Qt+1(St, At) = Qt(St, At) + ↵t�t (13)

R̄t+1 = R̄t + ⌘↵t�t (14)

B̄t+1(�t) = B̄t(�t) + �↵t�t. (15)

Here, R̄ makes the same update as in di↵erential Q-Learning, covering the gap between received reward

and expected average reward without state partitioning. However, Q and B̄ make updates which cover the

gap between received reward and expected reward with state partitioning. This ensures that R̄ remains a

mean statistic while B̄ encodes just the boost from being in the particular partition.

3.2 Environment: One-step Rewards

In the One-step Rewards environment, we have N states and N ⇥M actions. With each action, the agent

chooses the state to transition to next, and the reward to receive in the current state. A = {(n0,m) : n0 2
{0, .., N � 1},m 2 {0, ...,M � 1}}, P(s0 = n0 | s, a = (n0,m)) = 1 8s, and R(s = n, a = (n0,m)) = n+m

� with

probability 1, where � = N +M � 2 so that R 2 [0, 1]. This environment is depicted in Figure 3.

5

Figure 3: The One-step Rewards environment.

In our experiments, we explore a partition of the state-action space based on the second index of the

action, noting that higher second-actions will always yield higher rewards. That is, �t(St, At = (n0
t,mt)) =

mt.

3.3 Environment: Slippery GridWorld

The Slippery GridWorld environment is similar to GridWorld, except it is easier to move horizontally

than vertically. We have L2 states and 5 actions—our state space is an L-by-L grid, and our action space

A = {0, L,R, U,D}. The 0 action does nothing, the L/R actions move left or right with success probability

0.9, and the U/D actions move up or down with success probability 0.5. The agent receives reward R(s, a, s0 =

(s0h, s
0
v)) =

s0h⇥s0v
� with probability 1, where � = L2 so that R 2 [0, 1]

This environment is depicted in Figure 4.

In our experiments, we explore a partition of that state-action space based on the horizontal state, noting

that higher horizontal-states will yield higher rewards, and it is relatively easy to transition horizontally. That

is, �t(St = (Sh,t, Sv,t), At) = Sh,t.

4 Experiments

In our experiments, we measure the performance of our modified di↵erential Q-Learning method in compar-

ison the vanilla Q-learning and di↵erential Q-learning on the environments proposed in Section 3.

4.1 Experiment setup

We compare performance in our two environments with the appropriate boosting partitions as described

in Sections 3.2 and 3.3. We consider a One-step Rewards environment with N = 4 states and M = 4

rewards per state. In the Slippery GridWorld Environment, we use a side length of L = 8.

To compare the methods, we generate plots of both cumulative regret and average regret when applying

the di↵erent methods with an ✏�greedy exploration policy, where the ✏’s follow a universal, appropriate

6

Figure 4: The Slippery GridWorld environment.

decay schedule. Cumulative regret is defined as

RegretT = E⇡

"
T�1X

t=0

�⇤ �Rt+1

#
, (16)

where the optimal average reward �⇤ = sup⇡ �⇡, with

�⇡ = lim inf
T!1

E⇡

"
1

T

T�1X

t=0

Rt+1

���E
#
. (17)

The average regret received up to time T is defined as 1
T RegretT .

4.2 Results and discussion

In Figure 5, we compare the three methods on the One-Step Rewards environment, using a boosting par-

titioning along the second dimension of the action space. In Figure 6, we compare the three methods on

the Slippery GridWorld environment, using a boosting partitioning along the first dimension of the state

space. In all figures, lines indicate the regret averaged among 50 experiments. In both experiments, we

find that our boosting modification converges more quickly to an optimal policy compared to di↵erential

Q-learning and Q-learning with an added discount factor �. We noticed that our improvement, in terms of

regret, was even starker when using ✏-greedy with a fixed ✏ as opposed to a decaying schedule (not shown).

To observe the e↵ect of the choice of state-action transition, we also attempt to partition the Slippery GridWorld

environment by its actions rather than states. In Figure 7, we compare the three methods with action par-

titioning, which is not at all a natural partitioning for that environment. We find that our modification of

di↵erential Q-Learning significantly underperforms compared to di↵erential Q-learning.

7

(a) Cumulative Regret (b) Average Regret

Figure 5: Comparison of cumulative and average regret between Q-Learning, di↵erential Q-learning, and modified
di↵erential Q-learning when partitioning based on actions in the One-Step Rewards environment.

(a) Cumulative Regret (b) Average Regret

Figure 6: Comparison of cumulative and average regret between Q-Learning, di↵erential Q-learning, and modified
di↵erential Q-learning when partitioning based on horizontal state in the Slippery GridWorld environment.

(a) Cumulative Regret (b) Average Regret

Figure 7: Comparison of cumulative and average regret between Q-Learning, di↵erential Q-learning, and modified
di↵erential Q-learning when partitioning based on actions in the Slippery GridWorld environment.

8

5 Conclusion

For many complex environments Q-Learning may not be an appropriate algorithm for learning the optimal

policy since it does not necessarily converge to the optimal average reward. However, Di↵erential Q-Learning

has been proven to converge to the optimal policy given some assumptions on the environment, in partic-

ular that the environment can be formulated as a communicating MDP. We introduced two environments,

One-step Rewards and Slippery GridWorld to analyze this phenomena. Moreover, we proposed a new

algorithm, Modified Di↵erential Q-Learning, which adds new statistics of partitions of the joint state-action

set to the temporal di↵erence. We showed that it is possible to converge even faster than Di↵erential Q-

Learning, in particular that the Modified Di↵erential Q-Learning does that in both environments when the

partitions are chosen appropriately.

References

Abounadi, J., D. Bertsekas, and V. S. Borkar (2001). “Learning algorithms for Markov decision processes

with average cost”. In: SIAM Journal on Control and Optimization 40.3, pp. 681–698.

Wan, Y., A. Naik, and R. S. Sutton (2020). “Learning and Planning in Average-Reward Markov Decision

Processes”. In: arXiv preprint arXiv:2006.16318.

9

	Introduction
	Background
	Q-Learning
	RVI Q-Learning
	Differential Q-Learning
	Example: Delayed Reward Environment

	Methodology
	Modified Differential Q-Learning
	Environment: One-step Rewards
	Environment: Slippery GridWorld

	Experiments
	Experiment setup
	Results and discussion

	Conclusion

