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Abstract—Integrating electric vehicles (EVs) safely into the
electricity grid will require smart algorithms for scheduling
charging. These algorithms will have to reason about car state-
of-charge, grid constraints, and uncertainty in future electricity
pricing. In this paper, we formulate the problem of charg-
ing a large number of EVs with future price uncertainty as
a continuous-state Markov Decision Process (MDP). We use
feedforward and recurrent neural networks to perform system
identification offline to learn price transition models. We incor-
porate these models with Monte Carlo Tree Search with Double
Progressive Widening to solve for best actions online. Finally, we
turn our methods into a closed-loop controller, which we evaluate
in three pricing scenarios.

I. INTRODUCTION

LECTRIC vehicle (EV) charging requires significant

electricity consumption. Utilities are already observing
a trend of sharper electric demand ramp-ups in shorter time
periods. To meet unanticipated electricity demand, utilities of-
ten have to rely on “peaker” power plants, which typically use
dirtier fuel sources for electricity production. As an increasing
number of EVs are adopted, an increasingly larger burden will
be placed on the electricity grid, both in terms of net power
draw and in terms of stochastic unanticipated need. Mitigating
these infrastructural issues is necessary for widespread EV
adoption. This motivates a need for smart charging algorithms
that can schedule the charging of a large number of electric
vehicles.

Minimizing the cost of charging while considering con-
straints from the grid and the objective of charging all cars
in a timely fashion requires information about the state of
charge for each vehicle, how those charge levels evolve given
charging infrastructure, and the current and future costs of
electricity. While state-of-charge evolution may be known a
priori, the evolution of electricity costs may not. Specifically,
we consider the Real Time Pricing (RTP) scheme in which the
cost of electricity is proportional to the total demand a grid
experiences. In this work, we assume charging does not have
enough share in total power consumption to affect this total
demand, but this assumption can be relaxed easily.

In this paper, we formulate the problem of charging a set
of electric cars given constraints on the grid and uncertainties
in future cost as a Markov Decision Process (MDP). Given
the assumption that charging does not affect price, all we
have to do to determine when to charge is to predict future
price. We do this by using system identification offline to learn
different transition models for price. Specifically, we evaluate
the use of autoregressive transition models in which we use
a) feedforward neural networks (NN) and b) long short-term

memory (LSTM) to map past prices to a Gaussian distribution
over next-step price.

Since price and state-of-charge are continuous, we must rely
on approximate solution methods to choose the action in any
given state. This is done by implementing Monte Carlo Tree
Search (MCTS) with Double Progressive Widening (DPW)
[1]. While progressive widening on the state space would be
sufficient, adding progressive widening on the action space
would allow scaling up to charging a large number of n cars,
in which there are 2" possible decisions.

The main contributions of this paper can be summarized as:

o Formulating electric vehicle charge scheduling as a MDP

o Performing system identification offline using a NN and
LSTM to learn a transition model

o Implementing MCTS w/ DPW with our learned transition
models to solve for best actions online

The remainder of this section introduces necessary back-
ground, Section II formulates EV charge scheduling MDP,
Section III describes our experiments, and we conclude in
Section IV.

A. Background

1) EV Charge Scheduling: The common problem formula-
tion of charging EVs considers the binary action for whether
to charge each car at each time step given grid constraints, a
cost function, and a charging goal. Much work has been done
considering EV charge scheduling as a convex optimization
problem, even work including uncertainty in different grid
factors [2]-[6]. Unfortunately, the charge profile of an electric
profile is non-convex, rendering the problem non-convex. An
example charging profile depicting power draw as a function
of time for a Nissan Leaf can be seen in Fig. |1} Typically, the
power draw per is a function decreasing in a car’s state-of-
charge (SOC), and includes a very low-draw “trickle mode”
at the end of charging. This simple non-convexity makes
the use of control scheduling algorithms that rely on convex
optimization (e.g. Model Predictive Control) intractable.

2) Markov Decision Processes: An additional level of com-
plexity comes from taking into account the price of charging.
Naturally, it makes sense to schedule charging when the cost
of electricity is cheap, since this minimizes user costs and
avoids grid overloads. In a real-time pricing scheme (RTP),
the cost of charging is proportional to the total demand on the
grid. It thereby becomes essential to forecast total demand in
order to make better decisions about when to charge.

Given the non-convexities and uncertainty in the problem, it
is appropriate to make an alternative formulation as a Markov
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Fig. 1. An example charging profile. Power drawn during charging is
depicted as a function of time for a Nissan Leaf.

Decision Process (MDP). MDPs are fully described by a state
space S, action space A, reward function R : Sx AxS - R
describing the reward emitted with each decision, and the tran-
sition probability function 7 : S x A x § — [0, 1] describing
the probability of transitioning between states. The goal of
such an undiscounted, finite-horizon MDP is to find a policy 7
of actions to take that maximizes expected reward, or value at a
state V (s) = E[>}_, R(ss,a; = m(s¢), 8}) | so = s]. Discrete
state-action MDPs can be solved exactly offline using dynamic
programming, while continuous-state MDPs can be solved
approximately.

3) Monte Carlo Tree Search with Double Progressive
Widening: Often times, an optimal action for the entire state
space is not necessary. If all we care about is an action at a
particular state sg, then we only need to concern ourselves with
states reachable from sy. Monte Carlo Tree Search (MCTS) is
an online approximate solution method that takes advantage of
this. MCTS creates a search tree of states and actions up to a
max depth D. It keeps track of the number of times a particular
node has been visited, and running average of the value at each
node given reward obtained from a generator (s',r) G(s,a).
In the Upper Confidence Trees (UCT) implementation of
MCTS [7]], the action chosen at each node that has been visited
previously is a = arg max, Q(s,a) + ¢ %, where
Q(s,a) is the tabular form of expected value, N(s,a) is the
count for vising a certain state-action node pair, and c is
an exploration constant. Searching through actions this way
can be seen as striking a balance between exploration and
exploitation.

Note that UCT applied to continuous state or action spaces
would make for very shallow trees, as the probability of
visiting a state twice is zero. This is allayed by progressively
widening on the state and/or action space (referred to as
“double progressive widening” (DPW) when done on both).
The idea of progressive widening [8] done on the state space
for example is only sample a new state from a node if the value
ks N (s)®s is larger than the current number of branches at that
node, otherwise sample from those branches. Note that kg, o,
and likewise k, and o, are hyperparameters determining the
widening on the state and action spaces respectively. DPW
has been shown to be very effective at solving problems with
continuous state-action spaces.

II. PROBLEM FORMULATION

In this paper, we cast the problem of scheduling the charging
of C cars as a continuous-state Markov Decision Process
(MDP). At each time step, we make the binary to decision to
charge each car: A = {{0,1}“},| A |= 2. Our state space
is the cartesian product of the state-of-charge of each car and
all the variables required to derive price, S = Ssoc X Sprices
where SSOC = {(0, 1)0}.

If the decision is made to charge car ¢, then the level
of charge in the car soc. increases by f(soc.), where f is
determined by the charging profile, known a priori. The level
of charge in each car is fully observed, and it is assumed
for this project that each car has the same charging profile.
The power drawn off the grid in a single step is assumed
proportional to soc,, — soce.

The reward function we use to calculate true instantaneous
reward is a multi-objective function maximizing the final
charge of each car, the cost of electricity, and the infrastruc-
tural cost of charging many cars simultaneously:
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where p is the price of electricity in the current state and can
be derived from sp,ice € Sprice. The first term measures
the immediate electricity cost of charging, the second term
punishes the charger for charging many cars simultaneously
(acting as a grid constraint), and the third term punishes the
scheduler for cars that do not have full charge at the end of
the sequence (determined if s’ is a terminal state). The most
practical implementation of terminal states is to include time
in the state space, increment it by one at each time step, and
terminate once the simulation end time is reached. A and S
are hyperparameters that trade off the relative importance of
each of the three terms in our reward function.
Given the fully-defined MDP above, we can solve for the
best action from a given state online using Monte Carlo
Tree Search w/ Double Progressive Widening [8[]. While
technically we only need progressive widening on the state
space, progressive widening on the action space would allow
us to scale to a larger number of cars, as | A |= 2¢. MCTS
run once will tell us a best-case, open-loop string of actions
to run from an initial state so. We can formulate a closed-loop
method for charging in a fixed time window 7" as follows:
1) Run MCTS-DPW to depth T' with learned transition
model to obtain best action a from state s

2) Take action a, observe next price p, and use this infor-
mation to update true state s

3) Decrement T" by one and return to 1)

We note that p evolves independently from our charging
actions, and our process as such is non-Markovian, resulting in



variable reward at each state. This is why we must incorporate
electricity cost into the MDP state, and explore various ways
of making predictions on future cost. Since we have time series
data of electricity demand (and thereby price), we can perform
this system identification offline, and apply our learned models
as a transition function. In this paper, we evaluate three
different methods of system identification: a naive approach,
an autoregressive feedforward neural network, and a recurrent
neural network. The implications of each on the price state
space are described below.

A. Naive Price Transitions

The most basic price transition model would be predicting
that next state price is equal to current price. This is also
equivalent to predicting that the price will never change, as
the predicted price at depth D would also be equal to the
current price. Implementing this require Sp;;.. to contain only
one value, the current price p. Each iteration of MCTS-DPW
works with a single price until the very end. Then sp,;.. gets
updated with the true next-step price in the update step of the
closed-loop controller.

B. Feedforward Neural Network

A better method would be incorporating the past n prices
into the state at ¢, and learning a neural network to map those
costs to values that parameterize a distribution over cost at
t + 1. A neural network is a model which alternates between
taking linear combinations of nodes in a given layer to make
a new layer, and applying nonlinear activation functions on
the new layers. Neural networks are frequently used today
because of their ability to approximate any function. An simple
example can be seen in Fig.
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Fig. 2. An example neural network with two hidden layers and one output.

Our method has two outputs, the mean and standard deviation of a Gaussian
distribution over next price.

One can use a neural network to predict next state by
learning a mapping from n past prices to a mean and standard
deviation of a Gaussian distribution over next price. This
mapping must minimize the expected negative log likelihood
of the data. Learning can done by calculating the negative log
likelihoods of batches of the data given fixed model weights
(i.e. the likelihood of the true next price being drawn from a
Gaussian with mean and standard deviation derived from the
neural network), and then using first order methods to update
the model weights accordingly.

To implement this, we need to store the past n prices in
Sprice. FoOr our transition model, the next price would be
drawn from a Gaussian distribution defined by mean and
standard deviation obtained by running Sp,;.. through the
neural network and the next state s’,.,.. would shift the prices
appropriately. In the update step of the closed-loop controller,
we simply add the new true price and delete the oldest price
to SPrice

C. Recurrent Neural Network

A final method would be to use a recurrent neural network
(RNN) such as long short term memory (LSTM) [9] to keep
track of a hidden state that could map to parameters of a next
step price distribution. A recurrent neural network updates a
hidden state based on input it receives, a hidden state which
can easily be mapped to a set of outputs. LSTM propogates
a hidden state h and a cell state ¢ to allow for a slower
type of memory and to enable better gradient flow through
long sequences. LSTM the architecture for which can be seen
in Fig. 3] has proven especially useful for natural language
processing.
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Fig. 3.  Long short-term memory cell architecture.

This model could be learned offline in a method similar to
the one described in the last section. The output layers would
map the hidden state to a mean and standard deviation that
parameterize a Gaussian distribution over next-state price. At
each step, the LSTM would take as input the current price.
One could then learn model weights to minimize the expected
negative log likelihood of the data, that is the likelihood of
the true next price given the predicted mean and standard
deviation.

To implement a learned LSTM model with MCTS-DPW, we
need to store current price, along with the current hidden and
cell states in spy;.. For our transition model, the next price
would be drawn from a Gaussian distribution defined by mean
and standard deviation obtained by running the current hidden
state through the mapping from hidden state to distribution
parameters. The next state would consist of this sampled next
price, and the updated hidden and cell states from running
the sampled price through the LSTM. In the update step of
the closed-loop controller, we would need to add the true next
price, and run it through the LSTM to get the true next hidden
state and cell state.

III. EXPERIMENTS

In our experiments, we first take to offline system
identification to formulate the feedforward neural net-
work and the long short-term memory transition mod-
els. With each of these models, T(Sprice, @, Spyice)



N (8pice; 1(SPrice; 0),0(Sprice; ), where 6 encompasses
each models parameters. Again, to learn each model, we
compute the mean negative log likelihood given fixed model
weights for a batch of data, and use gradient methods to update
these weights. We use Adam [10]] as our weight optimizer. We
use LeakyReLU’s as our nonlinear activations. To ensure the
models can learn valid (positive) standard deviations, we add
a softplus layer before the standard deviation outputs.

To model prices, we use a representative electricity demand
dataset, namely the OpenEI residential load dataset |'| which
contains average hourly load data at different locations across
the United States for the period of one year. We specifically
look to data from the past 6 hours to predict the next one.
After some model parameter tuning which we evaluate using
a holdout dataset, we choose the fix the following model
architectures:

o NN: 3 hidden layers, each with 40 units
o LSTM: hidden/cell state size of 40, output neural network
has 2 hidden layers each with 20 units

We report the mean absolute percentage errors (MAPE) of
the next-step mean prices obtained from both methods on a
holdout set in Table [ MAPE is defined as

1 2 At - Ft
MAPE = — —,
where A; is the actual value and F} is the forecast value.

TABLE I
NEXT-STEP PREDICTION ACCURACY

Method MAPE (%)

Naive 135

Neural Network 3.8

Long Short-Term Memory 1.5

Once the transition models are learned, we implement
MCTS-DPW with each transition model, for which we use the
solver implementations in POMDPs.jl and MCTS jI [11]. We
use a state-of-charge transition function f(soc.) = .15/(1 +
exp(10(soc. — .8))), which describes the increment to each
car’s state-of-charge if the charge action is selected. This
function is loosely based on charging profiles obtained from
a Tesla forum?]

To test our methods, we sample three 20-step price scenarios
from our electricity consumption dataset. The scenarios that
were sampled can be seen in Fig f] We run our closed-loop
controllers on five cars that all start empty using the different
transition and state update models on each scenario. We run
five trials for each scenario-method combo, and report the
average reward obtained, and time per trial in Table [II} We
also report the reward if we were to take a naive charge-on-
arrival policy of charging each car to full immediately. A list
of hyperparameters used can be seen in Table The value

lopenei.org/datasets/files/961/pub/RESIDENTIAL_LOAD_DATA_E_
PLUS_OUTPUT/

of 8 = 200 artificially constrains all cars to be full by the end

of the simulation.
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Fig. 4.  The three price scenario used in the experiments.
TABLE 11
SIMULATION RESULTS
Method  Sim. Time Scen. 1 Scen. 2 Scen. 3
(s) Reward Reward Reward
Charge-on-arr. 0.0005 -116.3 -116.5 -114.3
MCTS-Naive 14 -83+17 -880+£09 -834+13
MCTS-NN 215 -86.0+ 1.1 -895+32 -86.1 32
MCTS-LSTM 541 -86.1+12 -89.0£10 -856=+1.8
TABLE III
PARAMETER VALUES
Name Description  Value
C Number of cars in simulation 5
A Grid Constraint Weight 0.5
B Final Car Charge Weight 200
N Number of Iterations of MCTS 1000
c Exploration Constant 10
ks, ka DPW Scale Factors 10
g, Qg DPW Exponents 0.5

The first thing one notices is that even though all MCTS
policies perform better than the charge-on-arrival policy, there
is not much improvement between them. To show this behavior
further, the models were run additionally with C' = lcar,\ =
0.0, so that the solver only had to fully charge one car while
only considering price. These experiments showed the same
behavior, with minimal differences between the policies for
the three MCTS methods.

This is counter-intuitive since there is a significant im-
provement in next-step price prediction accuracy between the
models. The most likely explanation for this is that even
though next-step errors are low, many-step errors are high as
the errors compound. The price estimate at ¢ 4+ 10 obtained
by sampling from an autoregressive neural network 10 times

Zteslamotorsclub.com/tmc/threads/updated-model-3-charging- profiles-durationdS just as bad as predicting p;419 = p:. Possible solutions to

145054/

this are discussed in the following section.
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IV. DISCcUSSION AND FUTURE WORK

Integrating a large number of electric vehicles into our
electricity grid safely requires the implementation of smart
charge scheduling algorithms. These algorithms must deter-
mine how to charge cars given grid constraints, different
charging patterns, and the cost of electricity. In a scheme
where future electricity price is not known a priori, we must
predict it to make the best decisions. Real Time Pricing
schemes price electricity proportional to total demand on a
grid, so in this paper we focus on predicting demand.

Charging is usually framed as an optimization problem.
However because of uncertainties and non-convex dynamics,
it makes sense to model it as a Markov Decision Process.
In this paper, we formulated electric vehicle charging as an
MDP, taking into account the state of charge in each car
and a price state that could be used to predict future prices.
We examined performing system identification offline to learn
a transition model between prices using feedforward neural
networks and long short-term memory. We took to solving the
resulting continuous-state large-action MDP online by using
Monte Carlo Tree Search with Double Progressive Widening.

We found that although there were significant improvements
in next-time price predictions in our models learned offline,
there were not significant improvements in overall closed-loop
controller performance. The most likely reason for this is that
predicting good next-step prices doesn’t help you much in
the long run, as errors still compound. A better approach
would be to simultaneously predict all future prices. This
could be done by keeping a belief over possible future price
curves, and updating that belief as prices are observed. This
would warrant turning the problem into a mixed-observability
Markov Decision Process (MOMDP), where the true price
state is the future price curve and it is only partially observed.

An alternative approach may be folding the time into state
[5] T. K. Kiristoffersen, K. Capion, and P. Meibom, “Optimal charging of
electric drive vehicles in a market environment,” Applied Energy, vol. 88,

no. 5, pp. 1940-1948, 2011.

space more directly, and making better predictions of price
based on time. Preliminary experiments show that priced
depends strongly on time-of-day, day-of-week, and month-of-
year, all information that we are excluding in our models but
can fold in very easily. If we made baseline predictions from
just the time, then we could could allow the models mentioned
in this paper to focus exclusively on learning the residuals.
This can be viewed as focusing on learning a distribution over
how far away we will be from the normal price (which would
already be known).
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