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Abstract

Accurate time-series forecasting is important for many applications. Well-studied examples include
weather, electricity consumption, tra�c, stock market, and sales forecasting. The typical forecasting
problem is to use a long sequence of observations y1:H to learn a model that predicts a next-step
observation given a shorter sequence of observations, yt+1 | yt�L+1:t. Many forecasts can be further
improved upon by providing external information et that is known at inference time. Examples of useful
external information include time-of-day if the time-series exhibits daily periodicity, or temperature if
weather could play a latent role in the time-series observations. Learning a model that can accurately
infer yt+1 | yt�L+1:t, et for a single time-series typically requires a lot of data for that time-series.

In this paper, we explore time-series forecasting when given short time-series in our target task,
but longer time-series in many related tasks. Meta-learning approaches seek to alleviate issues with
insu�cient data by leveraging data from di↵erent but related time-series. With black-box optimization
methods, one forms a single model that takes as input short support and query data and directly out-
puts predictions, training this model using the many related time-series. In memory-augmented neural
networks (MANN), recurrence is performed over support data and query inputs to learn useful hidden
states for prediction [Santoro et al., 2016]. We first formulate the time-series forecasting problem using
MANN with appended information inputs to help with forecasting (InfoMANN). We next contribute
adjustments such that recurrence at prediction time is performed over time in the query sequences
rather than over the sequences themselves (TSMANN). TSMANN uses the final hidden state from
support to initialize the recurrent network at prediction time, thereby encoding a ‘rulebook’ to use
for inference. TSMANN also allows us to make predictions about an arbitrary number of queries in
parallel, which is more useful to time-series forecasting, while the traditional MANN structure requires
recurrence over a fixed number of prediction queries.

Our experiments focus on forecasting hourly residential electricity consumption when the support
time-series are short. This is useful to utility companies who wish to build forecasting models at
new smart meter installation locations. We test our methods on the OPENEI TMY3 residential
dataset [OPENEI, 2020], focusing on building a model to make predictions when given queries of
L = 8 past observations, embeddings consisting of daily, weekly, and yearly period information, and
H = 504 indices (three weeks) of support data1. We find that both InfoMANN and TSMANN exhibit
lower mean squared error at test time compared to models trained on each support set individually. We
find that TSMANN does indeed improve upon InfoMANN, which in turn improves upon MANN. We
do however see that on this particular dataset, combining data across time-series into an augmented
dataset and learning a single prediction model for yt+1 | yt�L+1:t, et regardless of time-series does in
fact outperform all MANN-based models. We posit that this is due to similar trends across houses in
the dataset. We hope to address this in future work.

1Code available at https://github.com/jamgochiana/MetaProbabilisticLoadForecasting (requires permission from
authors).
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1 Introduction

In this project, we study the applications of meta-learning to few-shot forecasting of low-dimensional
time-series. Accurate time-series forecasting has use in many applications. For example, as a society we
are highly dependent on forecasts of weather, markets, and tra�c. In time-series forecasting, the goal is to
make predictions about future observations give a stream of H observations y1:H. Typically, rather than
building an inference model using the whole data stream, it is more useful to split the input stream into
shorter sequences of length L and build an inference model on the shorter sequences – p(yt+1|yt�L+1:t).
Doing so allows you to leverage your data to build an inference model that better captures short-term
dependencies, at the expense of long-term correlations.

We can improve forecasts by leveraging external information that is known a priori about possible
latent features. For example, many time-series experience periodicity–we can expect di↵erent observations
at di↵erent periods of time (e.g. daily cycles in tra�c, yearly cycles in weather). As another example,
you can expect electricity consumption to be highly correlated with weather. Is is therefore often useful
to encode this external information et, and to learn a joint inference model p(yt+1|yt�L+1:t, et).

Learning a good inference model requires a su�cient amount of data. However, we may not always
have su�cient data from our target time-series, but may have su�cient data from other related time-
series. In meta-learning, we wish to learn how to e�ciently use a small amount of data (the support
set) to learn a predictive model (to be used on a prediction set), given a lot of related data (a lot of
related support and prediction sets). In this paper, we take the black-box optimization approach to
meta-learning – that is to use all the related data to learn a single model that can take in a stream of
support data and make good predictions on the associated prediction data. Specifically, we focus on
adapting Memory-Augmented Neural Networks [Santoro et al., 2016] (MANN) for use with time-series.

In our experiments, we will focus on forecasting of electricity consumption. Electricity consumption
is fundamentally stochastic and influenced by unseen latent variables (e.g. weather), however accurate
load forecasting is critical to making dynamic resource allocations in the electricity grid. The few-shot
load forecasting setting is useful when not a lot of data is present–for example, when a new installation
of a smart meter is made. A sample of five days of residential electricity consumption data can be seen
in Fig. 3.

Figure 1: Sample hourly residential elec-
tricity consumption from the OPENEI
dataset [OPENEI, 2020], showing daily
periodicity.

Figure 2: A state-of-the-art architecture for
electricity forecasting with information aug-
mentation [Wang et al., 2019]. Recurrence is
performed over time, and information embed-
dings are appended to the final hidden state
before decoding.

One popular model for characterizing p(yt+1|yt�L+1:t, et) uses a recurrent neural network to perform
recurrence over time in the target data stream, then appends the information vector with the final hidden
state before decoding [Wang et al., 2019]. This architecture, which can be seen in Fig. 2, unfortunately

2



requires a lot of target series data. Though MANN requires little target data, it traditionally performs
recurrence over each element in the support and prediction set, rather than over time.

Our contributions in this project are to:

• extend memory-augmented neural networks for use for few-shot information-augmented forecasting
(InfoMANN),

• improve on InfoMANN by performing recurrence over time during prediction (TSMANN), and

• test our methods on an electricity consumption dataset.

Section 1.1 details related work, Section 2 details our methods, Section 3 details our experiments, and
we conclude in Section 4.

1.1 Related Work

In model-agnostic meta-learning [Finn et al., 2017], parameters are learned that enable quick fine-tuning
on the meta-test task. With memory-augmented neural networks (MANN) on the other hand, a model
is maintained that learns the entire few-shot training process [Santoro et al., 2016].

There are existing works in literature about multi-task time-series forecasting. Jin and Sun [2008] use
multi-task learning to take advantage of the information provided by related tasks and to improve gen-
eralization by transferring information in training signals of extra tasks. Multi-task learning is used for
tra�c flow forecasting. Fiot and Dinuzzo [2016] introduce kernel-based multi-task learning techniques to
forecast the demand of electricity measured on multiple lines of a distribution network. Their approach
allows to flexibly model the complex seasonal e↵ects that characterize electricity demand data, while
learning and exploiting correlations between multiple demand profiles. Cirstea et al. [2018] use a combi-
nation of convolutional neural network, auto-encoder and recurrent neural network to achieve multi-task
learning for forecasting in correlated time-series of cyber-physical systems. Fan et al. [2019] propose a
novel end-to-end data-driven approach for solving multi-horizon probabilistic forecasting tasks that pre-
dicts the full distribution of a time-series on future horizons. Temporal attention mechanism is used to
better capture latent patterns in historical data which are useful in predicting the future. Oreshkin et al.
[2020] investigate multi-task learning for time-series in the related zero-shot setting, reporting results
on the UCI Electricity dataset (among other things). To our knowledge, no work explicitly considers
few-shot probabilistic electricity load forecasting.

MANN has also been used for time-series forecasting. Li et al. [2020] use MANN to enhance the
demand prediction of knowledge-sparse public transportation modes with the data from knowledge-
intensive modes by deriving the transferable demand patterns from each mode and boost the prediction
of knowledge-sparse modes through adapting the relevant patterns from the knowledge-intensive modes.
Marchetti et al. [2020] propose a MANN based model that exploits memory augmented networks to
e↵ectively predict multiple trajectories of other agents, observed from an egocentric perspective. The
model stores observations in memory and uses trained controllers to write meaningful pattern encodings
and read trajectories that are most likely to occur in future.

There has been growing recent interest in probabilistic load forecasting [Hong and Fan, 2016]. Wang
et al. [2019] achieve state-of-the-art probabilistic performance using an LSTM with additional season-
ality embeddings in order to forecast quantiles of a predictive next-step distribution. They append the
information to a recurrent network hidden state embedding warmed-up by the input time-series.

2 Methods

In this section we outline:

1. how to sample sub-sequences from longer time-series for use in black-box meta-training,
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2. information-augmented MANN, which performs recurrence over sequences to learn a useful meta-
model, and

3. time-series MANN, which performs recurrence over time in the prediction sequences.

2.1 Data Generation Process

Recall that the goal of this project is to transfer knowledge gained from other longer time-series to learn
a good model given a shorter (support) time-series. Our assumption is that observations y within each
time-series (series s) in our meta set are drawn consistently from a single distribution ps(yt+1|yt�L+1:t, et)
for that time-series, where L is a short lag index and et is an information embedding vector. During
black-box meta-training, we must therefore learn to characterize ps with little data from ps, but a lot of
data from p\s.

We assume that we will have H time-steps of support data in our target problem. Our resulting data
generation process is highlighted in Fig. 3, and can be summarized in the following steps:

1. Sample a meta-batch of B random time-series.

2. For each time-series, sample H indices for support and save the subsequent H indices for prediction.

3. From each full support sequence, extract every (yt�L+1:t, et, yt+1) tuple for support.

4. From each prediction sequence, extract T random (yt�L+1:t, et, yt+1) tuples for prediction.

Figure 3: Our time-series data generation procedure (information embedding extraction not shown).

2.2 Information-Augmented MANN

Once we generated all training and testing tuples, we may run our tuples through a information-
augmented memory-augmented neural network (InfoMANN), depicted in Fig. 4. InfoMANN augments
MANN with the information embeddings. Each support and prediction sequence is treated as an indi-
vidual data vector, and recurrence is done over all data vectors to learn an encoding for ‘rules’. As with
MANN, the L-step sequences are appended to the next-step labels as input during the support section,
while next-step labels are nullified in the prediction inputs and used instead in the loss function.
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Figure 4: Information-augmented memory-augmented neural network (InfoMANN) with information
embeddings inserted after the first LSTM layer. The L-step sequences are appended to the next-step
labels as input during the support section, while next-step labels are hidden in the prediction section.

Typically, one might be interested in learning to make good point forecasts, and so therefore might
want to use mean-squared error as a loss function to be minimized. However, our meta-learning methods
are also amenable to probabilistic forecasting, the di↵erence being the length of the prediction vector
(purple in the figures) and the loss function. A table of popular forecasting schemes may be found below,
with ⇥i being the prediction vector for the i-th prediction query, and |⇥i| being the required cardinality
of the meta-model’s output vector. Note that additional measures need to be taken to properly specify
the probability distributions (e.g. standard deviations should be positive, weights should be positive and
sum to one, ↵-quantiles should be non-decreasing).

Table 1: Popular schemes for single-step forecasting, and their implications for use in these black-box
optimization architectures.

Setting Description ⇥i |⇥i| Loss

Point Vanilla Point µi 1 MSE

Robust Point µi 1 Huber [Huber, 1964]

Prob. Gaussian µi,�i 2 NLL

GMM {wk
i , µ

k
i ,�

k
i }Kk=1 3K NLL

Quantiles {↵q
i }

Q
q=1 Q Pinball [Koenker and Bassett Jr, 1978]

2.3 Time-Series MANN

InfoMANN has some drawbacks. First and foremost, we are only limited to reliably using InfoMANN
when we draw T random prediction query sequences from the future, which is impractical for time-series
forecasting. You generally only have one query sequence at a time – the past L inputs. We may try to
set T = 1 and iteratively feed the past L inputs to guess the next one, but we cannot practically use
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this model to make predictions at T sequences (unlike for example, in the K-shot, N-way classification
setting) because T � 1 of those query sequences are unknown.

Another drawback is that this system does not leverage the sequential nature of the problem to make
predictions. It treats all sequences as individual data vectors, and the recurrence is done over each input
vector. In contrast, state of the art methods for time-series forecasting (e.g. Fig. 2) perform recurrence
over time, and then append information embeddings to extract useful predictions. These methods exist
in the non-meta learning framework–the goal of the recurrence is to learn how to interpret and store
useful information from the time-series, that is learned in a way designed to be useful to inputs regardless
of their source.

We propose to address both of these concerns by implementing a sort of ‘conditional’ prediction
recurrent network, that performs recurrence in sequences over time conditioned on a set of ‘rules’ that
are learned from support. In time-series MANN (TSMANN), we adjust the previous architecture such
that after all support sequences are seen, the final hidden state is used to initialize LSTMs that perform
recurrence over time for prediction sequences. See Fig. 5 for an illustration.

Figure 5: Memory-augmented neural network for time-series with information augmentation (TSMANN).
Recurrence is done over all elements in the support set. The final hidden encoding is used as an initializa-
tion scheme for prediction networks, which perform recurrence over time and leverage information during
decoding, as is done in the presence of lots of data [Wang et al., 2019].

To learn a model, we may use the final support hidden state as an initial hidden/cell state for T

identical (shared parameter) LSTMs, which then apply time recurrence over the T test sequences to form
final hidden states that get used for forecasting next step in each sequence. The goal of meta-learning
in this framework is fewfold: a) to learn a good ‘set of rules’ (final hidden state) from support that can
be used during prediction and b) to learn a good prediction model that can interpret those ‘rules’ when
taking in a test sequence to learn a useful hidden state for prediction.

Once trained, this model can then be used to test an arbitrary number of sequences, simply by
initializing the starting hidden states for each sequence using the final hidden state from the support
section.
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3 Experiments

In our experiments, we aim to empirically prove the hypothesis that using meta-learning can indeed help
learn a good forecast model for a time-series with insu�cient data. We focus on building meta-trained
models for electricity consumption forecasting. This application has real-life benefits – better electricity
consumption forecasting with scarce data would give utility companies models to use at locations with
recent smart meter installations.

3.1 Setup

Dataset We use the OpenEI TMY3 dataset [OPENEI, 2020], which reports hourly consumption
patterns across di↵erent residential and commercial locations at di↵erent locations across the United
States. We test our model with the 973 residential locations, which we split into 80/10/10% train/val/test
series. Five days of residential consumption at a sampled location are shown in Fig. 1.

Problem Setting For our goal, we aim to build a good model for predicting next-hour load given
the past L = 8 hours of load. To capture seasonal, weekly, and hourly trends, we form information
embeddings of cyclically encoded hour-of-day, day-of-week, and month-of-year. We focus on building
these models given 3 weeks (H = 504, R = 496) of training data and T = 20 randomly sampled test
sequences. We also focus on point forecasting, hoping to minimize mean-squared error of forecasts on our
test dataset.

MANN Methods We compare two MANN approaches as introduced in Sec. 2.

1. InfoMANN: Following the structure described in Sec. 2.2, the InfoMANN inserts information em-
beddings at the input layer and uses a hidden dimension of 16 for both LSTM blocks.

2. TSMANN: Following the structure described in Sec. 2.3, the TSMANN uses a hidden dimension of
16 for all 3 LSTM blocks and the decoder uses two hidden layers with 16 hidden units.

Baselines To test the usefulness of meta-learning, we also implement two baselines:

1. MLP Per Task: An MLP model that is trained separately per task given only the 3 weeks of training
data. The MLP model takes the concatenation of loads from the past L = 8 hours as well as the
info embedding and output the predicted next hour load. It uses 5 hidden layers with 32 hidden
units to match the parameter number used in MANN models.

2. MLP All: An MLP model that is trained globally using an aggregation of all time-series in the
meta-training set. This model takes in queries while regarding their source time-series. The network
structure is the same as in MLP Per Task.

3.2 Results

Prior to running method comparisons, we perform some basic architecture design and compare where
information should be inserted into InfoMANN, if at all. The results (Fig. 6) show clear improvements
when using information embeddings, and show similar improvements when inserting embeddings at the
input layer or after the first layer. This justifies the use of InfoMANN over MANN.

Next, to compare the methods, each method is trained with 2⇥ 104 iterations using a batch size of
32 and a learning rate of 1⇥ 10�3. Each training is repeated with 3 di↵erent random seeds. The mean as
well as the standard deviation of the validation mean squared errors (MSEs) are plotted versus training
iteration in Fig. 7. Since the amount of the training data is significantly less in the MLP Per Task, there
is a severe overfitting. Thus, we train MLP Per Task with 2⇥ 103 iterations and report the minimum
MSE across the training averaged over all tasks in the meta-training/validation set.
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Figure 6: InfoMANN architecture design, com-
paring validation mean squared error when us-
ing di↵erent hidden dimensions (16, 32, 64) and
when inserting information embeddings at dif-
ferent layers (not at all, layer 0, layer 1).

Figure 7: Comparison of InfoMANN, TS-
MANN, and baselines. The horizontal red line
indicates the average of the minimum MSE
from the MLP Per Task baseline.

The training MSE of MLP Per Task is 0.0013, less than the two MANN experiments. This is expected
since the MLP Per Task model easily overfits the training data in each task. However, the performance
of MANNs on the meta-validation set is significantly better than MLP Per Task as shown in Fig. 7.
This validates the MANN approaches’ ability to aggregate useful information in the meta-training data
and generalize it on the meta-validation data. We also notice that the TSMANN behaves consistently
better than InfoMANN on both meta-training and meta-validation, which verifies our hypothesis that
TSMANN should behave better than InfoMANN by leveraging the sequential nature of the prediction
problem. The performance of the MLP All is unexpectedly better than MANN approaches. Since MLP
All is trained solely on the meta-training data without seeing any training data in meta-validation set,
this result suggests that the distribution di↵erence across meta-train and meta-validation tasks in the
dataset is not su�ciently large. We hope to address this in future work.

4 Conclusion

In this project, we studied the application of meta-learning methods on time-series prediction tasks.
Specifically, we explored two variants of the memory-augmented neural network (MANN) approaches,
namely InfoMANN and TSMANN, on the OPENEI TMY3 residential dataset. In InfoMANN, we studied
the a↵ect of augmenting the model with information embeddings to better capture external but known
features (such as periodicity in the time-series). Further in TSMANN, we demonstrated how a LSTM
encoder could be trained to embed a good ‘set of rules’ in its final hidden state from the training data
and applied it with a LSTM decoder on di↵erent series in the test data. Our experiments show that
both InfoMANN and TSMANN are able to get better performance than the MLP baseline trained only
using the per task data. For future work, we would like to investigate the performance di↵erence between
MANN methods and supervised learning baselines as we increase the di↵erence between individual tasks.
We would also like to explore the application of model agnostic meta learning (MAML) approaches on
time-series predictions.
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