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Abstract

In this project, we explore multiple-
target tracking and filtering in noise-
cluttered sensing environments. Specif-
ically, we formulate the Gaussian Mix-
ture Probability Hypothesis Density
(GM-PHD) filter, the analytical solu-
tion to multi-target Bayes filtering un-
der linear Gaussian assumptions and
time-varying numbers of targets. We
implement the GM-PHD filter as a Ju-
lia package, showcase simulations of its
effective use, and benchmark against
examples in literature.

I Introduction

Making decisions in a robotic environment re-
quires accurate state information of targets
in the environment. The objective of multi-
target tracking is to use sensor data to jointly
estimate, at each time step, the number of
targets in an environment and their states
[1]. Typically, this requires relying on a se-
quence of noisy and cluttered observation sets
and using probabilistic methods to form pos-
terior estimates on state. This becomes par-
ticularly challenging in a multi-target envi-
ronment, where not only do the states of the
targets vary with time, but the number of tar-
gets also change as targets appear and disap-
pear [1]. An active area of research revolves
around correlating cluttered sensor data with
objects evolving dynamically in the scene.

Many solution implementations involve
gating noisy observations (e.g. radar data)
above some threshold to estimate the pres-
ence of objects in a scene, then track-

ing those objects individually. However, a
large body of literature exists around mod-
eling joint distributions over potential ob-
jects and propagating forward those distribu-
tions. Some implementations such as Prob-
abilstic Data Association (PDA) [2], Joint
Probabilistic Data Association (JPDA) [2, 3],
and Multi-Hypothesis Tracking (MHT)[4], re-
quire explicit data association to propagate
filters. Later research uses finite-set statistics
(FISST) - namely the mathematical concept
of Random Finite Sets (RFS) - to formulate
multi-hypothesis Bayes filtering without re-
quiring explicit data association [5]. These
methods overcome the significant computa-
tional bottlenecks that accompany explicit
data association when a there are a large
number of targets. They also allow us to han-
dle uncertainty in the number of targets at
any point in time.

Using the RFS formulation, one can for-
mulate the multi-target Bayes filter by prop-
agating a Probability Hypothesis Density, or
a first-order statistic of the RFS of states in
time [5]. Under assumptions which we high-
light in Section III, one can obtain solutions
analogous to the Kalman filter for single-
target Bayes. If we assume dynamics and
measurements are linear Gaussian, and ob-
ject birthing and spawning intensities follow
Gaussian mixtures, then the Gaussian Mix-
ture Probability Hypothesis Density (GM-
PHD) filter is the resulting analytical-form
filter [1].

Because of its inclusion of target birth,
spawn, and death models, the GM-PHD fil-
ter is a useful solution to a wide range of
multiple-target tracking problems in clut-
tered sensing environments. Some examples
include:
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• Modeling motion of unknown number of
neighboring cars in a driving environ-
ment

• Tracking cars in an intersection as they
come in and out of scene

• Monitoring airspace over an airport as
airplanes take off and land

• Tracking motion of an aircraft carrier as
it births aircraft

• Tracking multiple warheads of an incom-
ing missile as they separate

In this project we discuss the formulation
of the GM-PHD filter and implement it in a
Julia package1. The rest of the paper is or-
ganized as follows. Section II describes back-
ground on multiple target tracking, including
the differences and advantages of different fil-
ters. Section III goes into depth on the GM-
PHD filter and its formulation. Section IV
discusses testing of our implementation, as
well as benchmarking with an example avail-
able in literature. Section V discusses an-
other example implemented using our pack-
age. We conclude and discuss future work in
section VI.

II Background

A Multi-target Tracking

With an established number of targets and
number of measurements, one can filter target
states using the multiple-hypothesis Kalman
filter (MHKF), an extension of the Kalman
filter which propagates a Gaussian Mixture
Model (GMM) over potential states. How-
ever in practice, the number of sensor mea-
surements is not fixed, but rather is cluttered.
The notion of multiple target tracking (MTT)
was introduced in [6] which used a Kalman
Filter to estimate the target states from clut-
tered measurements. To account for the com-
putational requirements, the set of targets are
divided into independent clusters.

One extremely common approach to tar-
get tracking in noise-cluttered sensing envi-
ronments is through the Probabilistic Data

1Available at https://github.com/
jamgochiana/GaussianFilters.jl

Association (PDA) filter [2]. The PDA filter
assumes that there only one target in that
noise, that the track for the target has been
initialized, that past information can be sum-
marized by a Gaussian posterior sufficient
statistic, if detected, there is only one true
target measurement and many independent
and identically distributed (i.i.d.) uniform in
space, Poisson in number false alarms, and
target detection occurs with known probabil-
ity. Under these assumptions, the PDA fil-
ter works by selecting valid measurements in
the validation region of the target at the cur-
rent time, computing an association probabil-
ity for each of those measurements, comput-
ing a weighted combined innovation based on
these association probabilities, and using the
combined innovation to update state.

The extension of this filter to multiple tar-
gets in the environment, where the number
of targets is known, is the Joint Probabilis-
tic Data Association (JPDA) filter [3, 2].
In the JPDA filter, the states are Gaussian
with approximated conditional means and co-
variances propagated as a sufficient statis-
tic. Measurements from one target can fall
in the validation region of a neighboring tar-
get, and dynamics and measurement models
for different targets do not have to be identi-
cal. In the JPDA filter, the measurement-to-
target association probabilities are computed
jointly, and the association probabilities are
computed only for the latest set of measure-
ments. The state estimation is then done sep-
arately as in a PDA filter in either a coupled
or a decoupled fashion.

Alternatively, another method for MTT
with explicit data association which many
modern multiple target tracking systems
implement is multiple hypothesis tracking
(MHT) [4]. MHT typically includes gat-
ing observations, forming new tracks and hy-
potheses combinatorially from those gated
observations and previously predicted tracks,
evaluating those tracks and hypotheses, out-
putting most likely hypothesis to the user,
and predicting tracks from the surviving
tracks and hypothesis. [7] highlighted the
major challenges of the assignment of the ob-
servations to the multiple targets and intro-
duced an extension to the particle filter (i.e.
non-parametric implementation of the Bayes
filter) to do so.

A problem with all of these aforementioned
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methods is their dependence on explicit data
association, which can be a major bottleneck
when the number of targets is high. Another
issue is the assumption that the number of
targets in clutter is known, which forces re-
liance on non-probabilistic methods for han-
dling when targets are introduced to and
leave from the scene. Because of these draw-
backs, it is has been practical to formulate
methods of filtering state estimation in high
signal-to-noise-ratio (SNR) environments in
ways that do not require explicit data associ-
ation.

B Probability Hypothesis Surface,
Density, and Filter

Towards modeling objects in a noise-cluttered
scene evolving under a joint distribution
without explicit data association, a formu-
lation is made using Random Finite Sets
(RFS), a concept from finite-set statistics
(FISST) [8]. RFS-based approaches encode
the number of states present at any given
time as a random variable, and the value of
each of those states a random vector. The
RFS-based filtering methods have the bene-
fits of not requiring explicit data association
between measurements and targets, and not
requiring the number of targets to be known
explicitly. PHD filters allow therefore for
Bayesian recursion considering random tar-
get births, spawns, and deaths.

The Probability Hypothesis Surface
(PHS), which encodes the first moment
of a RFS, was first introduced by Stein,
Winter and Tenney in a series of unpublished
manuscripts from 1993 to 1995 [9]. PHS
has the property that when the surface
is integrated over a region, it gives the
expected number of agents [9]. Furthermore,
the location of those agents can be inferred
from the peaks of the PHS. This laid the
foundation for the Probability Hypothesis
Density (PHD) filter, whose propagating suf-
ficient statistic - the Probability Hypothesis
Density - is defined by these properties.

[9] outlines the first full account of the ma-
terial discussed by Stein and Winter. Specif-
ically, he discusses the background for multi-
target moments, identifies the PHD as the
first-order statistical moment, derives the re-
cursive Bayes filtering equations, the predic-
tion and the update equations for the PHD

filter. [5] attempted a Multi-target Bayes Fil-
tering method using First-Order Multi-target
Moments derived in [9], but ran into several
issues. In particular, Mahler found that even
for single-target problems, the filter was too
computationally expensive. He goes so far as
to state “Multi-target Bayes will never be of
practical interest without the development of
drastic but principled approximation strate-
gies [5]. Despite his lack of initial success, he
did lay some groundwork for later work.

The PHD Filter was later solved analyt-
ically for the case where targets follow a
linear Gaussian dynamical model and the
sensors follows a linear Gaussian measure-
ment model. [1] introduces a tractable, ex-
act algorithm for this case, with further as-
sumptions that survival and detection prob-
abilities are state independent, and intensi-
ties of birth and spawn Random Finite sets
follow Gaussian mixtures. This algorithm,
denoted the Gaussian Mixture Probability
Hypothesis Density (GM-PHD) filter, pro-
vided significant improvement in computa-
tional efficiency over previous Monte-Carlo-
based methods used to approximate solutions
to the PHD filter recursion. The GM-PHD
filter was shown in [1] to always have better
tracking performance compared to the JPDA
filter, and especially when the clutter rate
increases or detection probability decreases.
Uniform convergence in the GM-PHD Filter
algorithm is proven and convergence results
of the extended Kalman PHD Filter are given
in [10]. The computational complexity of the
PHD filter recursion is formalized in [11].

Previously, Vo and Singh had decided to
approach the problem from an alternative di-
rection. Rather than using optimal Bayesian
multi-target filtering, linearizing the mod-
els (EK-PHD) or performing stochastic lin-
earization (UK-PHD), they approximated
the PHD by a set of weighted random sam-
ples which are propagated through time using
importance sampling and re-sampling strate-
gies. In order to do that, the probabilistic in-
terpretation of the PHD was presented with
the clever definition of the Prediction Opera-
tor and the Update Operator which enabled
the application of the Sequential Monte Carlo
methods (SMC). This became known as the
Sequential Monte Carlo PHD (SMC-PHD)
filter [12] and allowed a significantly less ”re-
strictive” environment than a GM-PHD fil-
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ter.
However, the major drawback is the ap-

proximation of the number of targets which
is heavily unstable when using the SMC-PHD
filter and the methods for the particles clus-
tering (e.g. k-means and EM) which either
assume the Gaussian density (EM) [13] or
implicitly assume the spherical shape of the
clusters (k-means) which becomes problem-
atic when the sensors outputs do not exhibit
radial symmetry (L2-Norm) or equivalently
in L1-Norm interpretation. These issues were
addressed by Ristic, Clark and Vo in a later
paper [13] by intelligent thresholding of the
weights assigned to each particle set created
by each measurement.

[1] also outlines the extensions to the non-
linear Gaussian models and puts forward
PHD Filter analogs to the Extended Kalman
Filter (EKF) and Unscented Kalman Filter
(UKF). Extented Kalman and Unsceneded
Kalman PHD filters (EK-PHD and UK-
PHD) were shown to provide a good approxi-
mation while being computationally more ef-
ficient than the Particle rendition of the PHD
filter [1].

Clark and Bell explored alternative sub-
optimal methods for multi-target tracking.
Specifically, they tried two particle fil-
ter methods (k-mean clustering and mix-
ture modelling) within the PHD framework
which carry respective assumptions explained
above. They found that both of their algo-
rithms were able to tracking multi-target sets
successfully when the assumptions hold [14].

One disadvantage of the GM-PHD and
SMC-PHD filters is the lack of identity infor-
mation of individual targets and hence lack of
the temporal association for agents over time.
In [15], they propose a multi-agent tracker
extension to the GM-PHD filter which ad-
dresses this issues. However, further work is
required to effectively track the crossing tar-
gets.

C PHD Filter Extensions

Since the application of Random Finite Sets
to state estimation, significant research has
been done extending the PHD Filter under
differing assumptions.

The Cardinalized PHD (CPHD) filter
propagates the entire probability distribution
on number of targets in order to present a

better-performance filter that is first-order in
states of individual targets but higher-order
in target number [16]. Mahler also proposed
a recursion for propagating multi-target pos-
terior density [11], namely the parameters
of a multi-Bernoulli RFS that approximate
the posterior multi-target RFS. An analyti-
cal Gaussian Mixture solution as well as a
Sequential Monte Carlo solution which solve
a cardinality bias in the original recursion for-
mulation are presented in [17]. The resulting
filter, which has gained recent popularity, is
known as the Multi-Bernoulli filter.

Even more recently, the idea of labeled RFS
was introduced to address target trajecto-
ries and their uniqueness by using conjugate
priors [18]. Using labeled RFS theory, the
labeled multi-Bernoulli (LMB) [19, 20] and
generalized labeled multi-Bernoulli (GLMB)
[21] filters have been formulated, and have
performance advantages in track estimation
with low signal to noise ratios.

While implementing these extensions qual-
ifies as great future work, the main goal of
this project is to explore and implement the
GM-PHD filter.

III GM-PHD Filter [1]

For a more detail on this section, the reader
is highly encouraged to read [1] on which this
derivation highly based upon.

A Random Finite Set

The Random Finite Set (RFS) formulation,
defines the collection of individual targets as
a set-valued state, and the collection of in-
dividual observations as a set-valued obser-
vation. Given M targets with states xk, N
measurements zk, at time-step k the respec-
tive collections can be represented as finite
sets [1].

Xk = {xk,1, . . . , xk,M(k)} (1)

Zk = {zk,1, . . . , zk,N(k)} (2)

The order in which the states are listed has no
significance, the origins of the measurements
are unknown and are indistinguishable from
misdetections. Using the RFS formulation to
model set-valued states and set-valued allows
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the problem of dynamically estimating mul-
tiple targets in the presence of clutter and as-
sociation uncertainty to be cast in a Bayesian
filtering framework [1]. The RFS formulation
enables the death and survival of targets at
the next time step, surviving targets evolve to
their new states and new targets can appear,
resulting in new states.

B PHD Filter

The Probability Hypothesis Density (PHD)
filter is a multiple-target filter for recursively
estimating the number and the state of a set
of targets given a set of observations [22].

Given a state xk−1 at time k− 1, the prob-
ability density of a transition to the state xk
at time k is,

fk|k−1(xk|xk−1) (3)

Given a state xk at time k, the probability
density of receiving the observation zk is,

gk(zk|xk) (4)

The probability density of the state xk at time
k given all observations up to time k is,

pk(xk|z1:k) (5)

Given the computational complexity of the
single-target Bayes nonlinear filtering equa-
tions, which is exacerbated in a multi-target
case [1]. The multi-target Bayes filter prop-
agates the multiple target posterior in time
via the recursion,

pk|k−1(Xk|Z1:k−1) =∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)dX

pk(Xk|Z1:k) =

gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)dX

(6)

Due to the computational complexity associ-
ated with the multi-target Bayes filter, an ap-
proximation strategy is required. The PHD
filter propagates the intensity of the targets
Random Finite Set (RFS) in time instead of
the full multi-target posterior density [22].

The propagation of the intensity of the tar-
gets RFS is achieved using the following defi-
nitions. Let x be a fixed target state and Z is
a data stream, Zk = [z1, ..., zk]. Then for any
i >= 1 the marginal-density value is given
by:

1

i!

∫
fk|k([x, x1, ..., xi]|Z(k))dx1...dxi (7)

Equation 7 is the total posterior likelihood
that the multi-target system has i + 1 tar-
gets and that one of these targets has state
x. Consequently, for each x the marginal-
density value is given by;

vk|k(x|Z(k)) =
∞∑
i=1

1

i!

∫
fk|k([x, x1, ..., xi]|Z(k))dx1...dxi

(8)

Equation 8 is the total posterior likelihood
that the multi-target system contains a tar-
get that has state x. As a result, vk|k(x|Z(k))
will tend to have maxima approximately at
the locations of the targets [9]. Note that,
the state vector x in a PHD filter represents
the collection of multi-target states as the tar-
gets in the observation region which is con-
stantly changing due to targets exiting or en-
tering the observation region as well as mis-
detections, spontaneous target birthing and
spawning. This state definition is in contrast
to the conventional fixed single-target state.

A unique property of the PHD of den-
sity, vk|k(x|Z(k)) is that when it is inte-
grated over a region in the target state space,∫
S
vk|k(x|Z(k))dx is equal to the expected

number of targets contained in S [9].
As proven in [9], the PHD is equal to the

expectation density or first factorial-moment
density of the RFS at a time-step k. Given
this property, the PHD, vk|k(x|Z(k)) is a form
of least-squares best-fit approximation of the
multi-target posterior fk|k(X|Z(k)) . By prop-
agating the PHD instead of the full multi-
target posterior, the PHD is a multi-target
analog of the single-target first-order moment
[9].

It should be noted that the PHD is only
a sufficient approximation of the full multi-
target posterior in a multi-target sensing situ-
ation where the signal-to-clutter ratio (SCR)
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as well as signal to noise ratio (SNR) is large.
If this is not the case the filter target state
estimates will diverge from the true target
states.

The clutter model, target existence and
birth and spawn dynamics for the filter are
represented below where ζ is the previous
state of a target [1]:

γk(·) intensity of the birth RFS Γk at
time k;

βk|k−1(·|ζ) intensity of the RFS βk|k−1(ζ)
spawned at time k by a target with pre-
vious state ζ;

pS,k(ζ) probability that a target still ex-
ists at time k given that its previous state
is ζ;

pD,k(x) probability of detection given a
state x at time k;

κk(·) intensity of clutter RFS Kk at time
k;

The following assumptions are made to the
clutter, RFS generation, target evolution and
detection for the model [1].

1. Each target evolves and generates obser-
vations independently of one another.

2. Clutter is Poisson and independent of
target-originated measurements.

3. The predicted multiple-target RFS gov-
erned by pk|k−1 is Poisson.

Assumptions 1 and 2 are standard assump-
tions used in most tracking applications [1].
Assumption 3 is a reasonable approximation
in applications where interactions between
targets are negligible.

The posterior intensity is propagated using
the PHD recursion given by:

vk|k−1(x) =

∫
pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ +∫

βk|k−1(x|ζ)vk−1(ζ)dζ + γk(x)

vk(x) = [1− pD,k(x)] vk|k−1(x) +∑
z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)

κk(z)
∫
pD,k(ξ)gk(z|ξ)vk|k−1(ξ)

(9)

C GM-PHD

C.1 Linear Gaussian Multi-target
Model

One issue associated with the PHD recur-
sion is that in general a closed-form solution
cannot be found. Therefore, a linear Gaus-
sian multi-target model is employed to find
a closed-form solution. The linear Gaussian
multi-target model requires the following as-
sumptions [1].

Each target and sensor follows a linear
Gaussian dynamical and measurement model
[1]:

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1) (10)

gk(z|x) = N (z;Hkx,Rk) (11)

where N( · ;m,P ) denotes a Gaussian den-
sity with mean m and covariance P , Fk−1 is
the state transition matrix, Qk−1 is the pro-
cess noise covariance, Hk is the observation
matrix, and Rk is the observation noise co-
variance.

The survival and detection probabilities of
the targets are assumed to be independent of
the state,

pS,k(x) = pS,k
pD,k(x) = pD,k

(12)

The intensities of the birth and spawn
RFSs are modelled as Gaussian mixtures of
the form;

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (13)

where Jγ,k, w
(i)
γ,k,m

(i)
γ,k, P

(i)
γ,k, i = 1, . . . , Jγ,k,

are model parameters which determine the
shape of the birth intensity of a new tar-

get. m
(i)
γ,k, i = 1, . . . , Jγ,k are the peaks of the

spontaneous birth intensity in, which repre-
sent the highest local concentrations of ex-
pected number of spontaneous births. These
peaks are locations where new targets are
most likely to appear, for example a junction
entrance or aircraft carrier. The covariance
matrix P

(i)
γ,k determines the spread of the birth

intensity around the particular peak and the
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weight w
(i)
γ,k gives the expected number of new

targets originating from the peak [1].

βk|k−1(x|ζ) =
Jβ,k∑
j=1

w
(j)
β,kN (x;F

(j)
β,k−1ζ + d

(j)
β,k−1, Q

(j)
β,k−1)

(14)

where Jβ,k, w
(j)
β,k, F

(j)
β,k−1, d

(j)
β,k−1, and

Q
(j)
β,k−1, j = 1, . . . , Jβ,k, are model parameters

which determine the shape of the spawning
intensity of a target with previous state ζ.
The peak of the spawning intensity of a tar-
get is an affine function of the previous state

ζ, F
(j)
β,k−1ζ + d

(j)
β,k−1 is an affine function of ,

as a new spawned target is modelled to be
spawned in the proximity of its parent. To ex-
tend the previous example mentioned where
ζ is state of the aircraft carrier at time k− 1,

while F
(j)
β,k−1ζ+d

(j)
β,k−1 is the expected state of

airplanes spawned at time k.

C.2 Gaussian Mixture PHD Recur-
sion

A closed form solution to the PHD recursion
is presented by applying the following two
propositions detailed in [1].
Proposition 1 : Suppose that the assump-

tions made in the definition of the linear
Gaussian Multi-target model hold and that
the posterior intensity at time k−1 is a Gaus-
sian mixture,

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (15)

Then, the predicted intensity for time k is a
Gaussian mixture, given by,

vk|k−1(x) =

vS,k|k−1(x) + vβ,k|k−1(x) + γk(x)
(16)

where,

vS,k|k−1(x) =

pS,k
∑

Jk−1

j=1 w
(j)
k−1N (x;m

(j)
S,k|k−1, P

(j)
S,k|k−1)

(17)

Algorithm 1: GM-PHD Filter Algorithm [1]

m
(j)
S,k|k−1Fk−1m

(j)
k−1 (18)

P
(j)
S,k|k−1Qk−1 + Fk−1P

(j)
k−1F

T
k−1 (19)
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vβ,k|k−1(x) =
Jk−1∑
j=1

Jβ,k∑
`=1

w
(j)
k−1w

(`)
β,kN (x;m

(j,`)
β,k|k−1, P

(j,`)
β,k|k−1)

(20)

m
(j,`)
β,k|k−1 = F

(`)
β,k−1m

(j)
k−1 + d

(`)
β,k−1 (21)

P
(j,`)
β,k|k−1 = Q

(`)
β,k−1 + F

(`)
β,k−1P

(j)
β,k−1(F

(`)
β,k−1)T

(22)
Proposition 2 : Again suppose that the the

assumptions made in the definition of the lin-
ear Gaussian Multi-target model hold and
that the posterior intensity at time k is a
Gaussian mixture given by,

vk|k−1(x) =

Jk|k−1∑
i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1, P

(i)
k|k−1)

(23)
Then, the posterior intensity at time k is also
a Gaussian mixture and is given by,

vk(x) = (1− pD,k)vk|k−1(x) +
∑
z∈Zk

vD,k(x; z)

(24)
where,

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)N (x;m

(j)
k|k(z), P

(j)
k|k)

(25)

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1

`=1 w
(`)
k|k−1q

(`)
k (z)

(26)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k (z−Hkm

(j)
k|k−1) (27)

P
(j)
k|k = [I −K(j)

k Hk]P
(j)
k|k−1 (28)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)

−1 (29)

Notice that Propositions 1 and 2 are the
prediction and update steps of the PHD
recursion for a linear Gaussian multiple-
target model, respectively. Proposition 2 pro-
vides closed-form expressions to calculate the
means, covariances, and weights of vk from
previous the PHD of the previous step, vk−1

when a set of measurements at time k arrive.
The steps involved in the GM-PHD filter

are detailed in Algorithm 1.

Algorithm 2: Pruning Algorithm [1]

Algorithm 3: Extraction Algorithm [1]

As the GM-PHD filter propagates Gaus-
sian mixtures in time, the number of Gaus-
sian components required to represent the
PHD, vk grows un-boundedly over time. A
time k the number of Gaussian components
required to represent vk is given by 30,

(Jk−1(1 + Jβ,k) + Jγ,k)(1 + |Zk|) =

O(Jk−1|Zk|)
(30)

where Jk−1 is the number of components of
vk−1. In order to limit both the the number of
Gaussian components and thus computation
time the Gaussian components whose weights
are below a certain threshold are discarded.
This process is completed using the pruning
algorithm detailed in Algorithm 2.
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Once the posterior density vk has been
computed the multiple-target state estimates
are then extracted using the extraction algo-
rithm in Algorithm 3. The Gaussian mix-
ture representation allow for easy extraction
of the state estimates as the means of the
Gaussian components are the local maxima
of vk. This process is far more complex for
example, when using a particle-PHD filter,
the estimated number of targets Nk is given
by the total mass of the particles representing
vk and the estimated states are then obtained
by partitioning these particles into Nk clus-
ters.

IV Testing

In order to verify our implementation is work-
ing correctly, we generated a couple of tests
and implemented an example from [1].

First, we wanted to test our implemen-
tation of the pruning method. We gen-
erated 1000 random Gaussian distributions
with random weights and covariances and fed
them through our pruning function described
in Algorithm 2. This was performed for both
a 1-dimensional and 2-dimensional case. The
results of the tests are shown in figures 4 and
5. Note that after pruning there are much less
high frequency fluctuations associated with
low sigma Gaussians. The results are harder
to see in figure 5, but under close inspection,
it can be seen that the peaks are less noisy
while maintaining their general shape.

From these results, we see that the prun-
ing is working as expected. In both cases,
we were able to reduce the number of Gaus-
sian models from 1000 to less than 50 without
losing too much fidelity in the model. An im-
portant property of the pruning algorithm is
that is in how the expected number of targets
over any region remains roughly the same.
This is handled by clever merging of nearby
Gaussian models. Pruning is extremely im-
portant in enabling the GM-PHD filter to
be used in real-time applications without re-
quiring an infeasible amount of computation
time, as such the verification of this process
is important in designing a usable GM-PHD
filter.

Secondly, we wanted to test the extraction
method. We generated 6 random Gaussian
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Figure 6: Extraction Tests

distributions with random weights and ex-
tracted the belief states from Gaussian Mix-
ture. Once again, this was performed for a 1D
and a 2D case. The results are shown in fig-
ure 6. The extracted states are represented
by vertical dashed lines in the 1D case and
crosses in the 2D case.

Once again, the tests verified that our func-
tions were working properly. The extraction
method is purely used to determine the ex-
pected locations of targets within our Gaus-
sian Mixture. This is required for many ap-
plications that require an actual estimated
state.

For the final test, to verify the full function-
ality of our implementation, we implemented
the Surveillance example from [1]. This ex-
ample runs through the entirety of the PHD
filter algorithm stack (filter step, prune, ex-
traction). The example consists of two track-
ing targets amid clutter and noisy measure-
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Figure 7: Surveillance Example

ments with an extra target spawning from
one of the targets at an unknown. Addition-
ally, to extend the example, we added a spon-
taneous birth to see if the filter would track
it.

The resulting trajectories are shown in Fig-
ure 7. The blue dots represent the truth tra-
jectories for the original and the spawned tar-
gets. The red dots represent the trajectory of
the spontaneously birthed target. The black
dots represent the output of the extracted
states from the filtered GMM.

These results match those presented in [1].
We were successfully able to track the exist-
ing, spawned and birthed targets with no is-
sues. With all of these tests done, we consider
our implementation verified.

V Application

Now that we have built and tested our own
implementation of the GM-PHD Filter, we
want to display it’s capabilities in a more
physical and complex example.

Consider tracking a moving aircraft carrier
and airplanes in the middle of the ocean. The
aircraft carrier has its own dynamics and has
the ability to spawn aircraft. Additionally, if
we are monitoring a fixed region of the ocean,
there is a possibility of aircraft entering the
region (birthing) from the edges. Let’s as-
sume we are able to obtain a noisy measure-
ment of the x and y positions of all targets
within the region of interest.

From the PHD-Filters perspective, let’s as-
sume the dynamics can be modeled as a first
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order integrator. The discrete dynamics can
then be written as:

xk+1 = Fkxk + wk (31)

Where:

xk = [px, py, vx, vy]
T (32)

FK =

[
I2 ∆I2

02 I2

]
(33)

wk ∼ N (0, Q) (34)

Q = σ2
p

[
∆4

4
I2

∆3

2
I2

∆3

2
I2 ∆2I2

]
(35)

where ∆ is the time step, σp is the standard-
deviation of process noise and wk is zero-
mean Gaussian white noise.

The measurement model is simply:

yk = Cxk + vk (36)

Where:

C = [I2 02] (37)

vt ∼ N (0, R) (38)

R = σ2
mI2 (39)

where σm is the standard deviation of the
measurement noise and vk is zero-mean Gaus-
sian white noise.

Since we are dealing with a square region
of interest, we define a birth region at each of
the four edges. Specifically the birth model
is:

wγ = 0.01 (40)

mγ1 = [−r, 0, v, 0]T (41)

mγ2 = [r, 0,−v, 0]T (42)

mγ3 = [0,−r, 0, v]T (43)

mγ4 = [0, r, 0,−v]T (44)

P1 = P2 = Diag([1, 2r, 1, v]) (45)

P3 = P4 = Diag([2r, 1, v, 1]) (46)

where r is the distance from the center of the
region of interest to one of the edges, and v
is the expected velocity of targets entering
the space (we chose r = 50, v = 5). Note
that we are assuming the expected birthing
point to be the center of each edge, and we
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Figure 8: Aircraft Carrier Example: Trajec-
tories

defined the uncertainty to be an extended el-
lipse along each edge. The birthing weight es-
sentially states the expected probability that
a target births from each of these regions per
time step.

Since we expect targets to be spawning
from the aircraft carrier, we define the spawn
model as:

wβ = 0.01

Qβ = Diag([1.0, 1.0, 5.0, 5.0])

We choose Q such that the positional uncer-
tainty is quite low, but the velocity uncer-
tainty enables spawned targets to exit the air-
craft carrier in any direction.

We choose the clutter density to be κ =
12.5 ∗ 10−6.

With all of this defined, we simulated a
system with one aircraft carrier, two aircraft
spawning from the aircraft, and two aircraft
birthing from the boundaries. The results of
running this scenario through our PHD Filter
can be seen in Figures 8 and 9.

To explain Figure 8, the aircraft carrier’s
trajectory is outlined in blue. There are two
aircraft that fly through the region of inter-
est. The first enters from the bottom bound-
ary and exits at the top. The second enters
from the left, performs a small loop and exits
through the right. The two spawned planes
can be identified since their trajectories start
along the aircraft carriers trajectory.

Figure 9 is simply the maximum of p(x)
along the time axis and shows an alternative
depiction of the same information
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Note that even though the control inputs
are unknown and our assumed discrete dy-
namics describe a straight line, the uncer-
tainty in the process noise allows us to track
more complicated trajectories. Specifically,
the filter is able to track an airplane as it
performs a small loop maneuver.

Additionally, it is worth noting that it took
a few measurement cycles before the our fil-
ter was able to track the airplane entering on
the left. It simply didn’t have enough infor-
mation to produce an state estimate until it
had obtained a few measurements.

VI Conclusion and Fu-
ture Work

In this paper, we survey different methods
for multi-hypothesis target filtering. We out-
line the formulation of the Gaussian Mix-
ture Probability Hypothesis Density filter,
the closed-form analytical solution to the
multi-target Bayes filter under linear Gaus-
sian assumptions. We implement the GM-
PHD Filter in a Julia package and implement
examples using the package. We compare our
benchmarks against examples in literature,
and highlight other uses for the filter.

Future work involves adding to the pack-
age to create a useful, well-maintained Gaus-
sian filtering package Julia. This includes
adding parametric single-target Bayes filter-

ing solutions (e.g. Kalman filter, Extended
Kalman filter, Unscented Kalman filter), as
well as extensions of the PHD filter under
differing assumptions (e.g. Extended PHD
filter, Unscented PHD filter, SMC-PHD fil-
ter, Multi-Bernoulli filter). We would also
like to implement the Multi-Bernoulli filter,
as well as multi-target trackers (e.g. GM-
PHD tracker).
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